• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[inequação modular] DÚVIDA SIMPLES EM INEQUAÇÃO MODULAR

[inequação modular] DÚVIDA SIMPLES EM INEQUAÇÃO MODULAR

Mensagempor brunocunha2008 » Sex Set 13, 2013 22:37

-2>x>2 = -2<x<2, gente, tenho muita dificuldade em interpretar sinais. Isso que eu escrevi é verídico ou está errado? Matematicamente falando...
brunocunha2008
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Set 13, 2013 22:31
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [inequação modular] DÚVIDA SIMPLES EM INEQUAÇÃO MODULAR

Mensagempor Rafael Henrique » Qui Jan 03, 2019 14:39

São diferentes meu caro amigo.

-2<x<2 indica que x está entre -2 e 2, ou seja, x > -2 e x < 2.


-2>x>2 é incoerente, pois está dizendo "que x < -2 e x > 2".

O certo seria:

| x - 1 | < 2, então -2 < x - 1 < 2

No entanto, se |x - 1| > 2, então x - 1 < -2 ou x - 1 > 2.

Espero ter ajudado.
Rafael Henrique
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Jan 03, 2019 10:02
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.


cron