• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação do 2º grau

Inequação do 2º grau

Mensagempor Rodrigo Will » Seg Mar 27, 2017 20:26

Dê o valor de 'm' para que a inequação:
X²+2x+m>10
Seja válida para qualquer valor de X.
Nesta questão eu já tentei igualar a expressão em 0, tornando assim uma equação do 2º grau e resolvendo passo-a-passo; achando DELTA e depois aplicando BHASKÁRA, mas não consegui chegar em um resultado correto. Então gostaria de aprender a resolver uma questão desse tipo, passo-a-passo. Grato!
A)m<0;
B)m>11;
C)0<m<9;
D)9<m<11.
Editado pela última vez por Rodrigo Will em Ter Mar 28, 2017 07:30, em um total de 1 vez.
Rodrigo Will
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Mar 27, 2017 20:09
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Inequação do 2º grau

Mensagempor petras » Ter Mar 28, 2017 01:51

Se você tem o gabarito poste para facilitar aos que lhe ajudam
petras
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Sex Jan 22, 2016 21:19
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Inequação do 2º grau

Mensagempor DanielFerreira » Sáb Abr 01, 2017 19:26

Olá Rodrigo, boa noite!

Rodrigo Will escreveu:Dê o valor de 'm' para que a inequação:
X²+2x+m>10
Seja válida para qualquer valor de X.
A)m<0;
B)m>11;
C)0<m<9;
D)9<m<11.


A inequação em questão é a quadrática. Resolvendo-a como uma equação do 2º grau, temos três possibilidades para o discriminante: \mathbf{\Delta < 0}, \ \mathbf{\Delta = 0 \ e \ \mathbf{\Delta > 0}}.

Ora, se delta for menor que zero a equação não terá raízes reais. Dito isto, podemos tirar que o discriminante de \mathbf{x^2 + 2x + (m - 10) = 0} deve ser menor que zero; afinal, \mathbf{x^2 + 2x + (m - 10)} deve ser maior que zero, e, se \Delta < 0 isto será sempre verdade (pois não terá um "x" satisfazendo a condição).

Segue,

\\ \mathsf{\Delta < 0} \\\\ \mathsf{b^2 - 4ac < 0} \\\\ \mathsf{4 - 4 \cdot 1 \cdot (m - 10) < 0} \\\\ \mathsf{4 - 4m + 40 < 0} \\\\ \mathsf{- 4m < - 44} \\\\ \mathsf{4m > 44} \\\\ \boxed{\mathsf{m > 11}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Inequação do 2º grau

Mensagempor Maloch45678 » Seg Mai 07, 2018 08:22

É um fórum muito bom, graças à informação útil.
Maloch45678
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Mai 07, 2018 07:29
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?