por Mbssilva » Dom Fev 12, 2017 15:41
Boa tarde amigos.
http://prnt.sc/e7s4riNão conseguir desenvolver ela. Porém, acredito que a condição de existência eu tenha conseguido achar: {x ? ?|-1? x <0 ou x ?1}.
Como posso terminar essa conta??
Obrigado desde já àqueles que me ajudarem.
-
Mbssilva
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Fev 12, 2017 15:28
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por 314159265 » Seg Fev 13, 2017 06:01
Eu tou tentando fazer sua questão, que realmente é complicada. Eu transformei a subtração do lado esquerdo em produto e fiz a análise do sinal das funções. Veja no anexo. Perceba que se x < 0, a inequação será sempre insatisfeita, pois negativo sempre vai ser menor do que positivo. Eu sei que minha solução está em x>=1 e sei também que pra x = 1 ela não é satisfeita, pois ambos os lados serão 0. Eu só não tou conseguindo provar que pra qualquer x > 1 a inequação é satisfeita. Pra isso eu só preciso provar que as curvas não se cruzam em x > 1.
- Anexos
-

-
314159265
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Seg Fev 13, 2017 02:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por adauto martins » Qua Fev 15, 2017 17:09
racionalizar os radicais:
![(\sqrt[]{x-(1/x)}-\sqrt[]{1-(1/x)}).(\sqrt[]{x-(1/x)}+ (\sqrt[]{1-(1/x))} \succ ((x-1)/x).(\sqrt[]{x-(1/x)}+\sqrt[]{1-(1/x)} (\sqrt[]{x-(1/x)}-\sqrt[]{1-(1/x)}).(\sqrt[]{x-(1/x)}+ (\sqrt[]{1-(1/x))} \succ ((x-1)/x).(\sqrt[]{x-(1/x)}+\sqrt[]{1-(1/x)}](/latexrender/pictures/0913c92c8fde9c9c453c7053306aaf2a.png)

![x-(1/x)-(1-(1/x))\succ ((x-1)/x).(\sqrt[]{x-(1/x)}+\sqrt[]{1-(1/x)} x-(1/x)-(1-(1/x))\succ ((x-1)/x).(\sqrt[]{x-(1/x)}+\sqrt[]{1-(1/x)}](/latexrender/pictures/728a5a1447183949fed726b94f7ffb36.png)
...
![x-1\succ ((x-1)/x).(\sqrt[]{...}+\sqrt[]{...})\Rightarrow x\succ \sqrt[]{...}+\sqrt[]{...} x-1\succ ((x-1)/x).(\sqrt[]{...}+\sqrt[]{...})\Rightarrow x\succ \sqrt[]{...}+\sqrt[]{...}](/latexrender/pictures/91c7a4f450923491314fd113c9fce24e.png)
...ai é elevar ao quadrado ate tirar o radical,assim resolve-se a inequaçao...termine-o...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Inequações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Lógica e Conjuntos, questão cabulosa.
por legendandom » Qui Abr 15, 2010 15:50
- 1 Respostas
- 2507 Exibições
- Última mensagem por Neperiano

Ter Set 27, 2011 19:58
Álgebra Elementar
-
- questão cabulosa. Ajuda aqui!!!
por zenildo » Seg Mai 09, 2016 01:49
- 4 Respostas
- 2901 Exibições
- Última mensagem por zenildo

Qui Mai 12, 2016 22:43
Trigonometria
-
- [INEQUAÇÂO] Inequação do tipo: (a+ x < b + x < c + x)
por Diofanto » Dom Fev 03, 2013 19:55
- 7 Respostas
- 5940 Exibições
- Última mensagem por Diofanto

Qui Fev 14, 2013 23:45
Inequações
-
- [inequação modular] DÚVIDA SIMPLES EM INEQUAÇÃO MODULAR
por brunocunha2008 » Sex Set 13, 2013 22:37
- 1 Respostas
- 7040 Exibições
- Última mensagem por Rafael Henrique

Qui Jan 03, 2019 14:39
Inequações
-
- Inequação
por Luna » Seg Set 28, 2009 18:55
- 4 Respostas
- 3478 Exibições
- Última mensagem por Molina

Ter Set 29, 2009 16:50
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.