por Raquel299 » Dom Mar 08, 2015 15:15
Elimine o módulo em: | x-1 | + |x+2 |
-
Raquel299
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Dom Mar 08, 2015 14:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Ciências Biológicas
- Andamento: cursando
por Russman » Seg Mar 09, 2015 03:20
Considerando a função

Comecemos com

. Se

então

Daí, se

,

.
Agora, se

e, portanto,

, temos

.
Caso de

e, portanto,

é

.
Daí,

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Raquel299 » Sex Abr 10, 2015 10:51
Russman escreveu:Considerando a função

Comecemos com

. Se

então

Daí, se

,

.
Agora, se

e, portanto,

, temos

.
Caso de

e, portanto,

é

.
Daí,

Obrigada Russman!
-
Raquel299
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Dom Mar 08, 2015 14:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Ciências Biológicas
- Andamento: cursando
Voltar para Inequações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Módulo
por Rodrigo Tomaz » Sex Fev 19, 2010 11:36
- 4 Respostas
- 2837 Exibições
- Última mensagem por MarceloFantini

Sex Mar 05, 2010 16:09
Funções
-
- Modulo
por Sandy26 » Ter Abr 27, 2010 14:46
- 5 Respostas
- 2807 Exibições
- Última mensagem por MarceloFantini

Qui Abr 29, 2010 17:57
Álgebra Elementar
-
- Módulo
por Bebel » Dom Ago 08, 2010 00:24
- 0 Respostas
- 1307 Exibições
- Última mensagem por Bebel

Dom Ago 08, 2010 00:24
Números Complexos
-
- Modulo.
por 380625 » Qui Mar 17, 2011 11:21
- 2 Respostas
- 1995 Exibições
- Última mensagem por LuizAquino

Sex Set 09, 2011 10:47
Cálculo: Limites, Derivadas e Integrais
-
- Módulo
por torilleon » Sáb Ago 20, 2011 19:28
- 2 Respostas
- 1481 Exibições
- Última mensagem por Neperiano

Sáb Ago 20, 2011 20:40
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Simplifique a expressão com radicais duplos
Autor:
Balanar - Seg Ago 09, 2010 04:01
Simplifique a expressão com radicais duplos abaixo:
Resposta:
Dica:
(dica : igualar a expressão a

e elevar ao quadrado os dois lados)
Assunto:
Simplifique a expressão com radicais duplos
Autor:
MarceloFantini - Qua Ago 11, 2010 05:46
É só fazer a dica.
Assunto:
Simplifique a expressão com radicais duplos
Autor:
Soprano - Sex Mar 04, 2016 09:49
Olá,
O resultado é igual a 1, certo?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.