• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(PUC-SP)

(PUC-SP)

Mensagempor Thiago 86 » Seg Abr 01, 2013 12:25

Saudações :-D , estou resolvendo um lproblema e surgil uma dúvida. O problema é : no conjunto R, o conjuto verdade de -{x}^{2} +2x+15<0 é:-{x}^{2} +2x+15<0

-{x}^{2} +2x+15=0

{x}_{1}= 5

{x}_{2} = -3

; substituindo, temos:

S={x\in R/ x<-3 ou x>5}.

Minha dúvida é, os resultados que eu encontrei para x eu devo elevar assim:(-(-3))^2 ... ou -(-3)^2...
E qual a diferença entre S={ x<-3 e x>5} e S={x<-3 ou x>5}.
Desde já eu estou agradecido pela atenção que os colaboradores vem me dando. :)
Thiago 86
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Fev 11, 2013 18:55
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso técnico em enfermagem
Andamento: cursando

Re: (PUC-SP)

Mensagempor DanielFerreira » Ter Abr 16, 2013 15:38

Olá Thiago,
a dúvida é antiga, mas,...

Thiago 86 escreveu:Minha dúvida é, os resultados que eu encontrei para x eu devo elevar assim:(-(-3))^2 ... ou -(-3)^2...


O correto é a segunda, mas atente para o fato de o sinal ser <, por isso, o valor de x deve ser menor que - 3, e, não igual!

\\ - x^2 + 2x + 15 < 0 \\ - (- 4)^2 + 2 \cdot (- 4) + 15 < 0 \\ - (16) - 8 + 15 < 0 \\ - - 16 - 8 + 15 < 0 \\ - 9 < 15

Para a outra raiz, o 'procedimento' é análogo!

Thiago 86 escreveu: E qual a diferença entre S={ x<-3 e x>5} e S={x<-3 ou x>5}.

\boxed{\text{e}} está relacionado a intersecção, ao que é comum; já o \boxed{\text{ou}}, a união.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: (PUC-SP)

Mensagempor Thiago 86 » Qua Abr 17, 2013 11:31

Valeu parceiro por responder minha dúvida. :y:
Thiago 86
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Fev 11, 2013 18:55
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso técnico em enfermagem
Andamento: cursando

Re: (PUC-SP)

Mensagempor Thiago 86 » Qua Abr 17, 2013 11:32

Você sabe de algum blog que tirem dúvidas de português.
Thiago 86
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Fev 11, 2013 18:55
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso técnico em enfermagem
Andamento: cursando

Re: (PUC-SP)

Mensagempor DanielFerreira » Sex Abr 26, 2013 21:33

Não conheço!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Inequações

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?