• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(MACKENZIE-SP)

(MACKENZIE-SP)

Mensagempor Thiago 86 » Qua Mar 27, 2013 23:23

Saudações :-D , estou tentado responder essa inequação, mas não consigo me mexer, por causa do denominador que não tem icógnita.
\frac{1}{x+1} \geq 0
Thiago 86
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Fev 11, 2013 18:55
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso técnico em enfermagem
Andamento: cursando

Re: (MACKENZIE-SP)

Mensagempor timoteo » Qui Mar 28, 2013 00:52

Olá.

Multiplique ambos os lados por (x + 1)(x + 1); x > ou = -1.
É isso ai!
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando

Re: (MACKENZIE-SP)

Mensagempor DanielFerreira » Sex Mar 29, 2013 07:21

A 'sentença' será verdadeira se o denominador também for positivo, por isso:

\\ x + 1 \geq 0 \\\\ x \geq - 1 \\\\ \boxed{S = \left [- 1, + \infty)}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: (MACKENZIE-SP)

Mensagempor Thiago 86 » Seg Abr 01, 2013 10:23

danjr5 escreveu:A 'sentença' será verdadeira se o denominador também for positivo, por isso:

\\ x + 1 \geq 0 \\\\ x \geq - 1 \\\\ \boxed{S = \left [- 1, + \infty)}


Saldações :-D , obrigado por responder minha dúvida, porém ocorel um pequeno equivoco na hora que você digitou, a resposta não pode ser x\geq -1 pois se não o denominador daria zero, portanto a resposta terá que ser x>-1. :y:
Thiago 86
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Seg Fev 11, 2013 18:55
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso técnico em enfermagem
Andamento: cursando

Re: (MACKENZIE-SP)

Mensagempor DanielFerreira » Sáb Abr 06, 2013 21:03

Tens razão. Desculpe o equívoco!!

Até a próxima!

Daniel.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}