• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida em inequação modular

Dúvida em inequação modular

Mensagempor Rafael16 » Sáb Dez 29, 2012 19:20

Resolva a inequação \left|\frac{x-4}{3x-1} \right| \geq2.

Para (I)

\frac{x-4}{3x-1}\geq2 \Rightarrow \frac{-5x-2}{3x-1}\geq0

Solução para (I): S = {x\in\Re|-\frac{2}{5}\leq x<\frac{1}{3}}


Para (II)

\frac{x-4}{3x-1}\leq-2 \Rightarrow \frac{7x-6}{3x-1}\leq0

Solução para (II): S = {x\in\Re|\frac{1}{3} < x \leq \frac{6}{7}}

Fazendo a UNIÃO das duas soluções: S = {x\in\Re|-\frac{2}{5} \leq x \leq \frac{6}{7} e x\neq\frac{1}{3}}


Agora outra inequação:

Resolva a inequação \left|\frac{2x+3}{x-1} \right|<4

Para(I)

\frac{2x-3}{x-1}>-4 \Rightarrow \frac{6x-1}{x-1}>0

Solução para (I): S={x\in\Re|x<\frac{1}{6} ou x>1}

Para (II)

\frac{2x+3}{x-1}<4 \Rightarrow \frac{-2x+7}{x-1}<0

Solução para (II): S = {x\in\Re|x<1 ou x>\frac{7}{2}}

Fazendo a INTERSECÇÃO das duas soluções: S = {x\in\Re|x<\frac{1}{6} ou x>\frac{7}{2}}

Não entendi porque na primeira inequação fez a união das soluções, e já na outra fez a intersecção.
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Dúvida em inequação modular

Mensagempor e8group » Sáb Dez 29, 2012 20:53

Vou resolver a primeira de uma forma diferente ,comente qualquer coisa .

Seja , |f(x) |= \left|\frac{g}{ h }(x)\right|   , h(x) \neq 0 .


Onde :

g(x) =  x- 4 e h(x) =  3x - 1 .

Vamos obter os intervalor para as quais as funções g e h são positivas e negativas .

Temos :

g(x) > 0  \iff  x- 4  > 0  \iff x > 4    \implies   g(x) é positiva para todo x em ( 4 , + \infty )

E ,

g(x) < 0 \iff  x - 4 < 0 \iff x < 4      \implies  g(x) é negativa para todo x em (-\infty,4) .

De forma análoga temos ,

h(x) > 0   \iff   3x - 1 > 0   \iff  x >  1/3 \implies h(x) é positiva para todo x em ( 1/3 , + \inft )

E,

h(x) < 0    \iff      x < 1/3   \implies h(x) é negativa para todo x em ( -\infty , 1/3 ) .


A conclusão é que quando h e g são simultaneamente positiva ou negativa ,vamos ter f estritamente positiva ,caso contrário f < 0 .


Mas perceba que não necessariamente todos elementos do domínio da função h pertence ao domínio da função g . (De modo que acontece os casos acima ) ;

Tomando a interseção ,segue que :

Para g > 0 \text{e} \ h > 0  \text{ou} f > 0

(1/3,+\infty)\cap (4,+\infty) = (4, +\infty) .

Para g < 0 \text{e} \ h < 0  \text{ou} f > 0


-\infty,1/3)\cap (-\infty,4) = (-\infty , 1/3) .


Já agora , veja :

Para g < 0 \text{e} \ h > 0  \text{ou} f < 0

(1/3,+\infty)\cap (-\infty,4) = ( 1/3,4)

Para g > 0 \text{e} \ h < 0  \text{ou} f < 0

(-\infty,1/3)\cap (4,+\infty) = \varnothing .


Com isso podemos reescrever a função f em sentença e retirar o seu modulo :


f(x) = \begin{cases} \frac{x-4}{3x - 1}  \ \ \text{se }  x \in (-\infty , 1/3)\cup(4, +\infty) \\  - \left(\frac{x-4}{3x - 1}  \right ) \ \ \text{se } x\in ( 1/3,4)\end{cases} .


Conseguiu entender por que tivermos que fazer a interseção . Agora só resolver f \geq 2 .

Caso 1 : x \in (-\infty , 1/3)


\frac{x-4}{3x - 1} \geq  2  \iff x- 4 \leq 2(3x-1) \ \text{Por que ?} \iff x -6x\leq -2 + 4 \iff - 5x \leq 2  \iff x \geq  -2/5

Agora note que qualquer 1/3 > x \geq  -2/5 satisfaz \frac{x-4}{3x - 1} \geq  2 .


Como chegamos a este resultado , veja nossa condição :

x \in (-\infty , 1/3) .

Faça um teste , 1 > -2/5 .Mas 1 não satisfaz \frac{x-4}{3x - 1} \geq  2 .(Reflita!) .


Agora tente concluir os casos 2 e 3 .

Caso 2 : x \in (4, +\infty)


Caso 3: x \in (1/3, 4)

É bem trabalhoso , mas acredito que é bem mais claro de compreender desta forma .Espero q ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.