• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equaçoes] com potencia e com 2 incognitas

[Equaçoes] com potencia e com 2 incognitas

Mensagempor Joao Petrocelle » Seg Out 01, 2012 20:39

Tenho duas equações com potencia e duas incognitas i e s que são expoentes.

a primeira é
{0,41}^{1/s}=1-{0,958}^{i}

a segunda é
{99,59}^{1/s}=1-{0,042}^{i}

como faço para isolar uma e substituir na outra?
Joao Petrocelle
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Set 14, 2012 07:34
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Arquitetura / Administração
Andamento: formado

Re: [Equaçoes] com potencia e com 2 incognitas

Mensagempor young_jedi » Seg Out 01, 2012 22:47

sugiro utilizar logaritimo

log(0,41)=-0,3872

log(99,59)=1,9982

substituindo

\frac{1}{s}log(0,41)=log(1-0,958^i)

\frac{1}{s}log(99,59)=log(1-0,042^i)

isolando 1/s na primeira e substituindo na segunda

\frac{1}{s}=\frac{log(1-0,958^i)}{-0,3872}

\frac{log(1-0,958^i)^}{-0,3872}.(1,9982)=log(1-0,042^i)

log(1-0,958^i)^{-5,1606}=log(1-0,042^i)

(1-0,958^i)^{-5,1606}=1-0,042^i

fazendo nova substituição

x=10^i

log(0,958)=-0,0186

log(0,042)=-1,3767

(1-x^{-0,0186})^{-5,1606}=1-x^{-1,3767}

para resolver essa equação acrdito que voce precisara recorrer a algum software
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)