• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INEQUAÇÕES]

[INEQUAÇÕES]

Mensagempor andrecalegarif » Sáb Set 15, 2018 22:17

Resolva as inequações em R

x^3 - 7x^2 + 11x - 5 > 0

Já tentei de tudo, isolar x, passar o - 5 pro outro lado, mas não sei... Preciso de uma luz.
andrecalegarif
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qua Jul 05, 2017 18:24
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: [INEQUAÇÕES]

Mensagempor DanielFerreira » Dom Set 30, 2018 21:00

Olá André!

Pelo Teorema das raízes racionais tiramos que \mathbf{5} é uma das raízes da equação

\mathsf{x^3 - 7x^2 + 11x - 5 = 0}


Por conseguinte, podemos determinar as demais raízes dividindo \mathbf{x^3 - 7x^2 + 11x - 5 = 0} por \mathsf{(x - 5)}, ou, pelo Dispositivo Prático de Brit-Ruffini!

Isto posto, chegamos no conjunto-solução abaixo:

\boxed{\mathsf{S_o = \left \{ 1, 5 \right \}}}

Onde a raiz x = 1 tem multiplicidade dois.


Por fim, temos que:

\\ \mathsf{x^3 - 7x^2 + 11x - 5 > 0} \\\\ \mathsf{(x - 1) \cdot (x - 1) \cdot (x - 5) > 0} \\\\ \mathsf{(x - 1)^2(x - 5) > 0}


Estudando os sinais,

___+___(1)___+____________+______
___-________-_______(5)___+______
___-___(1)___-_______(5)___+________

Logo,

\boxed{\boxed{\mathsf{S = \left \{ x \in \mathbb{R} / x > 5 \right \}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1682
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)