• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equação com duas variaveis

equação com duas variaveis

Mensagempor celita » Qui Jul 28, 2016 23:34

voltei a estudar, como tem muito temó q estudei este tipo de assunto estou com dificuldades porque esse envolve fração.
me ajudem com o passo a passo.

x+2y= \frac{-3}{2}

3x-y= \frac{-7}{2}
celita
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jul 28, 2016 23:14
Formação Escolar: EJA
Área/Curso: nentend
Andamento: cursando

Re: equação com duas variaveis

Mensagempor Daniel Bosi » Sex Jul 29, 2016 09:37

Olá celita! :y:

x+2y= \frac{-3}{2}

3x-y= \frac{-7}{2}

Perceba que como o lado direito das igualdades divide 2, podemos multiplicar por dois em ambos os lados da igualdade, pois a igualdade é uma balança, e tudo que fazemos de um lado tem que ser feito do outro lado (vulgarmente dizemos "passar o dois pro outro lado multiplicando"):

2\cdot(x+2y)=\frac{-3}{2}\cdot2

2\cdot(3x-y)=\frac{-7}{2}\cdot2

Agora podemos cancelar o número 2 no lado direito da igualdade:

2\cdot(x+2y)=-3

2\cdot(3x-y)=-7

Podemos, então, multiplicar o 2 pelos termos de dentro do parênteses, usando a propriedade distributiva:

2x+4y=-3

6x-2y=-7

Para montar o sistema podemos multiplicar todos os termos da primeira equação por -3, para poder cancelar o elemento x:

(2x+4y=-3)\cdot(-3)

6x-2y=-7

O que resulta no seguinte sistema:

-6x-12y=9

6x-2y=-7

Agora podemos somar termo a termo, o x da primeira equação com o x da segunda equação. O y da primeira equação com o y da segunda equação. O lado direito da igualdade da primeira equação com o lado direito da igualdade da segunda equação.

Perceba que o x cancela e ficamos com:

-14y=2

Agora podemos dividir por 14 de ambos os lados (ou "passar o 14 dividindo"):

-y = \frac{2}{14}

Simplificando por 2 e trocando o sinal para que o y fique positivo:

y = -\frac{1}{7}

Então o y é igual a -1/7.

Para encontrar o x basta substituir este y em uma das equações. Vamos escolher a primeira:

x+2y= \frac{-3}{2}

Substituindo o y que encontramos:

x + 2\cdot\left(-\frac{1}{7}\right)=-\frac{3}{2}

Podemos multiplicar o 2 pelo -1/7:

x -\frac{2}{7}=-\frac{3}{2}

Agora somamos 2/7 de ambos os lados (ou "passamos o -2/7 somando para o outro lado"):

x =-\frac{3}{2}+\frac{2}{7}

Tirando o mínimo múltiplo comum:

x=\frac{-21+4}{14}

Por fim:

x=-\frac{17}{14}

Caso você tenha dúvidas volte a questionar. :y:

Daniel
Daniel Bosi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Mai 16, 2016 21:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.