• Anúncio Global
    Respostas
    Exibições
    Última mensagem

equação com duas variaveis

equação com duas variaveis

Mensagempor celita » Qui Jul 28, 2016 23:34

voltei a estudar, como tem muito temó q estudei este tipo de assunto estou com dificuldades porque esse envolve fração.
me ajudem com o passo a passo.

x+2y= \frac{-3}{2}

3x-y= \frac{-7}{2}
celita
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jul 28, 2016 23:14
Formação Escolar: EJA
Área/Curso: nentend
Andamento: cursando

Re: equação com duas variaveis

Mensagempor Daniel Bosi » Sex Jul 29, 2016 09:37

Olá celita! :y:

x+2y= \frac{-3}{2}

3x-y= \frac{-7}{2}

Perceba que como o lado direito das igualdades divide 2, podemos multiplicar por dois em ambos os lados da igualdade, pois a igualdade é uma balança, e tudo que fazemos de um lado tem que ser feito do outro lado (vulgarmente dizemos "passar o dois pro outro lado multiplicando"):

2\cdot(x+2y)=\frac{-3}{2}\cdot2

2\cdot(3x-y)=\frac{-7}{2}\cdot2

Agora podemos cancelar o número 2 no lado direito da igualdade:

2\cdot(x+2y)=-3

2\cdot(3x-y)=-7

Podemos, então, multiplicar o 2 pelos termos de dentro do parênteses, usando a propriedade distributiva:

2x+4y=-3

6x-2y=-7

Para montar o sistema podemos multiplicar todos os termos da primeira equação por -3, para poder cancelar o elemento x:

(2x+4y=-3)\cdot(-3)

6x-2y=-7

O que resulta no seguinte sistema:

-6x-12y=9

6x-2y=-7

Agora podemos somar termo a termo, o x da primeira equação com o x da segunda equação. O y da primeira equação com o y da segunda equação. O lado direito da igualdade da primeira equação com o lado direito da igualdade da segunda equação.

Perceba que o x cancela e ficamos com:

-14y=2

Agora podemos dividir por 14 de ambos os lados (ou "passar o 14 dividindo"):

-y = \frac{2}{14}

Simplificando por 2 e trocando o sinal para que o y fique positivo:

y = -\frac{1}{7}

Então o y é igual a -1/7.

Para encontrar o x basta substituir este y em uma das equações. Vamos escolher a primeira:

x+2y= \frac{-3}{2}

Substituindo o y que encontramos:

x + 2\cdot\left(-\frac{1}{7}\right)=-\frac{3}{2}

Podemos multiplicar o 2 pelo -1/7:

x -\frac{2}{7}=-\frac{3}{2}

Agora somamos 2/7 de ambos os lados (ou "passamos o -2/7 somando para o outro lado"):

x =-\frac{3}{2}+\frac{2}{7}

Tirando o mínimo múltiplo comum:

x=\frac{-21+4}{14}

Por fim:

x=-\frac{17}{14}

Caso você tenha dúvidas volte a questionar. :y:

Daniel
Daniel Bosi
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Mai 16, 2016 21:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?