• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo Vetorial - Parametrização] - Reta

[Cálculo Vetorial - Parametrização] - Reta

Mensagempor anselmojr97 » Dom Mar 20, 2016 01:25

Boa noite, galera. Estou tentando responder uma questão de parametrização da Reta a horas, mas meu resultado não bate com a resposta do livro.

A pergunta é a seguinte:
Determinar uma representação paramétrica da reta representada por:

2x-5y+4z=1, 3x-2y-5z=1

Eu entendi que essas são equações de dois planos, com os vetores normais(n1 e n2) como eles não são combinação um do outro, então, há uma intersecção entre eles, que delimitada por uma reta. Que seria essa reta que pede a representação paramétrica.

Como para representar parametricamente uma reta preciso de um ponto pertencente a ela e o vetor diretor, procurei no Youtube como conseguir os mesmos e me ensinaram assim:
Adotar X=0 para ambas, resolve o sistema com restante, encontrando assim X=0, Y= -3/11 e Z=-1/11, sendo um ponto em comum que atende as duas equações, tendo então o ponto A=(0;-3/11;-1/11). Depois para encontrar um vetor ortogonal simultaneamente aos dois planos( vetor diretor da reta), fazia-se o produto Vetorial dos vetores normais aos planos, obtive o vetor V=3i+2j+1k. Com essas informações, tentei a representação paramétrica, mas o resultado não é igual ao do Livro. Creio ter errado algo ou não ser esse a maneira correta de responder essa questão ou livro está com algum erro. Por isso peço a ajuda de vocês.
Desde já agradeço.



"Felizes aqueles que se divertem com problemas que educam a alma e elevam o espírito." (Fenelon)
anselmojr97
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Set 17, 2015 21:52
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}