por diegoconain5 » Ter Jul 15, 2014 22:47
Um barril contém trinta litros de água e outro vinte litros de suco.Tomam-se simultaneamente x litros de cada barril e permutam-se. Essa operação se repete várias vezes e pode-se comprovar que a quantidade de suco em cada barril se mantém constante após a primeira operação. Determine quantos litros x são retirados em cada operação?
-
diegoconain5
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Jul 15, 2014 22:36
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por diegoconain5 » Qua Jul 16, 2014 13:05
[Dúvida][/size]
diegoconain5 escreveu:Um barril contém trinta litros de água e outro vinte litros de suco.Tomam-se simultaneamente x litros de cada barril e permutam-se. Essa operação se repete várias vezes e pode-se comprovar que a quantidade de suco em cada barril se mantém constante após a primeira operação. Determine quantos litros x são retirados em cada operação?
-
diegoconain5
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Jul 15, 2014 22:36
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Como resolver esse problema?
por denfo » Sex Dez 04, 2009 13:22
- 1 Respostas
- 6613 Exibições
- Última mensagem por denfo

Qui Dez 10, 2009 20:16
Matemática Financeira
-
- Não sei como começar a resolver esse problema
por Sil » Ter Nov 02, 2010 19:36
- 5 Respostas
- 6255 Exibições
- Última mensagem por Sil

Ter Nov 02, 2010 21:40
Matemática Financeira
-
- Como resolvo esse problema envolvendo equação?
por LuizCarlos » Ter Jul 26, 2011 17:15
- 2 Respostas
- 4548 Exibições
- Última mensagem por LuizCarlos

Ter Jul 26, 2011 18:30
Sistemas de Equações
-
- como resolvo esse problema de sistema de equação?
por kellen e winicius » Ter Ago 30, 2011 00:13
- 3 Respostas
- 5073 Exibições
- Última mensagem por Caradoc

Ter Ago 30, 2011 20:50
Sistemas de Equações
-
- Como trabalhar com essa fórmula pra esse problema
por jbruno_mf » Ter Jun 19, 2018 00:50
- 0 Respostas
- 5115 Exibições
- Última mensagem por jbruno_mf

Ter Jun 19, 2018 00:50
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.