• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação do segundo grau] Relação entre raíz e coeficiente

[Equação do segundo grau] Relação entre raíz e coeficiente

Mensagempor Gustavo Gomes » Sex Fev 14, 2014 21:44

Olá!
Na equação a{x}^{2}+bx+c=0, os coeficientes a, b e c são inteiros e a>0. Sabendo que uma das raízes é \frac{2}{5-\sqrt[]{11}}, qual o menor valor possível de a?

A resposta é 7.

Não sei como associar a raiz ao valor do coeficiente a.....

Aguardo, Grato.
Gustavo Gomes
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Out 05, 2012 22:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática-Licenciatura
Andamento: formado

Re: [Equação do segundo grau] Relação entre raíz e coeficien

Mensagempor DanielFerreira » Seg Fev 17, 2014 15:06

Olá Gustavo,
boa tarde!

Desenvolvemos a raiz dada:

\\ x' = \frac{2}{5 - \sqrt{11}} \times \frac{5 + \sqrt{11}}{5 + \sqrt{11}} \\\\\\ x' = \frac{2(5 + \sqrt{11})}{25 - 11} \\\\\\ x' = \frac{10 + 2\sqrt{11}}{14}


Ora, sabemos que numa equação de grau o valor de "x" é dado por \frac{- b \pm \sqrt{\Delta}}{2a}

Portanto, comparando o denominador podemos concluir que:

\\ 2a = 14 \\\\ a = \frac{14}{2} \\\\ \boxed{a = 7}


Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.