por kayone » Dom Set 22, 2013 17:37
Pessoal boa tarde, estamos com um grupo de estudos e encontramos o seguinte problema que nenhum de nós conseguimos resolver.
Seria a seguinte equação:
y'= x+y/2x
chegamos em:
dy = xdx
y 2x
Então:
lny = ??? agora travamos...alguem pode ajudar ? Obrigado
-
kayone
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Set 22, 2013 17:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Man Utd » Dom Jun 15, 2014 23:49
-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Solução de uma Equação diferencial ordinaria
por thejotta » Seg Jan 14, 2013 00:03
- 0 Respostas
- 957 Exibições
- Última mensagem por thejotta

Seg Jan 14, 2013 00:03
Cálculo: Limites, Derivadas e Integrais
-
- [Equação diferencial] Solução incorreta?
por KleinIll » Qui Set 19, 2013 15:45
- 2 Respostas
- 1601 Exibições
- Última mensagem por KleinIll

Sáb Set 21, 2013 01:15
Cálculo: Limites, Derivadas e Integrais
-
- [Equação diferencial parcial] Ajuda para solução de EDP
por GustavoArtur » Qui Set 22, 2011 14:24
- 3 Respostas
- 2372 Exibições
- Última mensagem por GustavoArtur

Sex Set 23, 2011 12:58
Cálculo: Limites, Derivadas e Integrais
-
- [Equação diferencial] Região no plano com única solução
por Aliocha Karamazov » Dom Fev 26, 2012 11:52
- 1 Respostas
- 3682 Exibições
- Última mensagem por LuizAquino

Dom Fev 26, 2012 13:39
Cálculo: Limites, Derivadas e Integrais
-
- Equações diferenciais: solução geral
por emsbp » Sáb Abr 07, 2012 18:01
- 1 Respostas
- 819 Exibições
- Última mensagem por MarceloFantini

Sáb Abr 07, 2012 19:03
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.