• Anúncio Global
    Respostas
    Exibições
    Última mensagem

duvida sobre x' e x''

duvida sobre x' e x''

Mensagempor Debylow » Ter Dez 04, 2012 16:57

tenho uma dúvida sobre x' e x'' :
quando eu chamo , por exemplo , 2{}^{x}=y , em uma equação exponencial , que depois cai em uma equação do 2°
grau , dai eu acho o x' e o x'' , que por exemplo são 2 e 1 , dai eu tenho que substituir o 2 e 1 assim {2}^{2}=y ou assim {2}^{x}=2 ( tenho que colocar o 2 e 1 no lugar do x ou do y ?
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: duvida sobre x' e x''

Mensagempor Russman » Ter Dez 04, 2012 19:06

Se você resolver a equação para x deve substituir os valores em x. Se resolver para y, em y.

Por exemplo:

2x+y=5y-2x +8

Resolvendo para x:

2x + 2x = 5y + 8 - y
4x = 4y + 8
x =\frac{4y + 8}{4}
x = y+2

Agora tente resolver para y. Você deve obter y = x-2.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}