• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PARES ORDENADOS + RETA NUMÉRICA + EQUAÇÃO

PARES ORDENADOS + RETA NUMÉRICA + EQUAÇÃO

Mensagempor Myllena » Dom Dez 02, 2012 02:51

Se você traçar a reta que contém os pares ordenados que são soluções de x + y = 2 e a reta que contém os pares ordenados que são soluções de x + y = 4 , em um mesmo gráfico , qual desses pares ordenados será o ponto do cruzamento das duas retas: (3, 1) , (3, -1) , ou (4, 0) ? em seguida construa o gráfico para confirmar sua resposta .

obs : (fiquei o bimestre todo sem nenhum professor só chegou uma diretora lá e falou pra gente fazer um trabalho em vez da prova e eu não estou intendendo NADA !) e eu preciso muito de tirar 100 , me ajuuuuuda !! vou ter infarte ..

Tem que fazer a conta e
Myllena
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Dez 02, 2012 02:34
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Escola
Andamento: cursando

Re: PARES ORDENADOS + RETA NUMÉRICA + EQUAÇÃO

Mensagempor DanielFerreira » Dom Dez 02, 2012 18:24

Olá Myllena,
seja bem-vinda!
Um par ordenado é representador por (x, y), onde o x recebe o nome de Abscissa e o y o nome de ordenada.
O ponto de cruzamento entre as equações é um ponto, certo?! Esse ponto é comum as duas equações, ou seja, o ponto que passa pela equação x + y = 2 passa também por x + y = 4. Enfim, você deverá testar os pontos que foram dados e verificar qual deles é o procurado.



Vou tentar o primeiro ponto e você verifica os outros dois, ok?!

(x, y) = (3, 1)
Isso significa que \boxed{x = 3} e \boxed{y = 1}

Testando na equação x + y = 4, veja:
x + y = 4
3 + 1 = 4
4 = 4 É VERDADEIRA!!!!


Testando na equação x + y = 2, veja:
x + y = 2
3 + 1 = 2
4 = 2 É FALSA!!!!

Para que esse ponto fosse a resposta, teria que ser verdadeira nas duas equações, lembre-se disso. Então, podemos concluir que esse ponto não é o que procuramos.

Agora é com você.

Até breve!!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?