• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Inequação quadrática]

[Inequação quadrática]

Mensagempor SCHOOLGIRL+T » Seg Nov 19, 2012 16:55

\left|{x}^{2}-5x \right|>6
Eu fiz então:
{x}^{2}-5x+6<0
E encontrei 2<x<3
E depois:
{x}^{2}-5x-6>0
E encontrei x<-1 U x>6
A solução final seria união entre estas soluções, mas daria um conjunto vazio. Está errada minha resolução?
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Inequação quadrática]

Mensagempor MarceloFantini » Seg Nov 19, 2012 23:18

Você está confundindo união com interseção.

A interseção entre estes dois conjuntos é vazia. Interseção entre dois conjuntos significa todos os elementos que pertencem a cada um simultaneamente, o que de fato não ocorre.

A união entre eles não. União entre dois conjuntos significa todos os elementos que pertencem a pelo menos um dos conjuntos. Ela é (- \infty, -1) \cup (2,3) \cup (6, + \infty).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Inequação quadrática]

Mensagempor SCHOOLGIRL+T » Ter Nov 20, 2012 11:39

MarceloFantini escreveu:Você está confundindo união com interseção.

A interseção entre estes dois conjuntos é vazia. Interseção entre dois conjuntos significa todos os elementos que pertencem a cada um simultaneamente, o que de fato não ocorre.

A união entre eles não. União entre dois conjuntos significa todos os elementos que pertencem a pelo menos um dos conjuntos. Ela é (- \infty, -1) \cup (2,3) \cup (6, + \infty).


Realmente. Se \left|x \right|>a, então x<-a OU x>a. Tinha me passado despercebido o "OU" rsrs. Obrigada.
SCHOOLGIRL+T
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Qua Nov 07, 2012 08:59
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?