• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INEQUAÇÕES]

[INEQUAÇÕES]

Mensagempor andrecalegarif » Sáb Set 15, 2018 22:17

Resolva as inequações em R

x^3 - 7x^2 + 11x - 5 > 0

Já tentei de tudo, isolar x, passar o - 5 pro outro lado, mas não sei... Preciso de uma luz.
andrecalegarif
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Jul 05, 2017 18:24
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: [INEQUAÇÕES]

Mensagempor DanielFerreira » Dom Set 30, 2018 21:00

Olá André!

Pelo Teorema das raízes racionais tiramos que \mathbf{5} é uma das raízes da equação

\mathsf{x^3 - 7x^2 + 11x - 5 = 0}


Por conseguinte, podemos determinar as demais raízes dividindo \mathbf{x^3 - 7x^2 + 11x - 5 = 0} por \mathsf{(x - 5)}, ou, pelo Dispositivo Prático de Brit-Ruffini!

Isto posto, chegamos no conjunto-solução abaixo:

\boxed{\mathsf{S_o = \left \{ 1, 5 \right \}}}

Onde a raiz x = 1 tem multiplicidade dois.


Por fim, temos que:

\\ \mathsf{x^3 - 7x^2 + 11x - 5 > 0} \\\\ \mathsf{(x - 1) \cdot (x - 1) \cdot (x - 5) > 0} \\\\ \mathsf{(x - 1)^2(x - 5) > 0}


Estudando os sinais,

___+___(1)___+____________+______
___-________-_______(5)___+______
___-___(1)___-_______(5)___+________

Logo,

\boxed{\boxed{\mathsf{S = \left \{ x \in \mathbb{R} / x > 5 \right \}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}