• Anúncio Global
    Respostas
    Exibições
    Última mensagem

número de apartamentos

número de apartamentos

Mensagempor dandara » Ter Set 23, 2014 14:48

Uma empresa de engenharia está construindo um prédio, no qual todos os andares terão o mesmo número de apartamentos. Sabe-se que o número de andares é igual ao triplo do número de apartamentos mais 2. Se o total de apartamentos nesse prédio é igual a 56, o número de apartamentos por andar que estão sendo construídos é...
dandara
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Set 23, 2014 14:37
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: número de apartamentos

Mensagempor nakagumahissao » Qui Set 25, 2014 02:10

Sabe-se que o número de andares é igual ao triplo do número de aptos. mais 2. Isto quer dizer que:

Seja n o número de apartamentos e a o número de andares. Tem-se que:

a = 3n + 2

Tomando-se t como sendo o total de apartamentos e considerando que o total de aptos. nesse prédio é 56, tem-se:

t = 56 = a * n = (3n + 2).n =

= 3{n}^{2} + 2n = 56

3{n}^{2} + 2n - 56 = 0

\Delta = 4 + 672 = 676

n = \frac{-2 \pm \sqrt[]{\Delta}}{6} =  \frac{-2 \pm 26}{6}

{n}_{1} = -\frac{28}{6}

{n}_{2} = \frac{24}{6} = 4

Como números negativos não nos interessam, n assume o valor de 4.

Logo, de a = 3n + 2 => a = 12 + 2 = 14

O Número de Andares é portanto 14 e o número de apartamentos por andar é 4, que é a quantidade procurada.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)