• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação do segundo grau] Raiz positiva

[Equação do segundo grau] Raiz positiva

Mensagempor Gustavo Gomes » Ter Dez 10, 2013 22:15

Olá, pessoal!
Seja r a raiz positiva da equação {x}^{2}+x-1=0.
Qual é o valor de \frac{{r}^{5}}{1-r}+\frac{{2r}^{6}}{{(1-r)}^{2}}?

A resposta é 1.

Não consegui resolver... Algumas resoluções que pesquisei utilizam a igualdade: {r}^{2}=1-r. Não entendi como a raiz r satisfaz essa equação...

Aguardo. Grato.
Gustavo Gomes
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 50
Registrado em: Sex Out 05, 2012 22:05
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática-Licenciatura
Andamento: formado

Re: [Equação do segundo grau] Raiz positiva

Mensagempor e8group » Qua Dez 11, 2013 17:36

Gustavo Gomes escreveu:Olá, pessoal!
Seja r a raiz positiva da equação {x}^{2}+x-1=0.
Qual é o valor de \frac{{r}^{5}}{1-r}+\frac{{2r}^{6}}{{(1-r)}^{2}}?

A resposta é 1.

Não consegui resolver... Algumas resoluções que pesquisei utilizam a igualdade: {r}^{2}=1-r. Não entendi como a raiz r satisfaz essa equação...

Aguardo. Grato.


Note que por hipótese , r^2+r-1 = 0  ,  r > 0  (*) e assim ,

r^2 = 1-r .

Em relação ao exercício , só manipular tal expressão e utilizar (*) .

\frac{{r}^{5}}{1-r}+\frac{{2r}^{6}}{{(1-r)}^{2}} =  r^5 \frac{1+r}{(1-r)^2} = r^5\frac{1+r}{r^4} = ... . Avance .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.