• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema de Equações exponenciais (iezzi)

Sistema de Equações exponenciais (iezzi)

Mensagempor BrunoLima » Ter Nov 26, 2013 16:05

Galera Dá uma luz aqui por favor,

2^{2(x^2-y)}=100*5^{2(y-x^2)}

x+y=5

Então eu tentei substituir direto na equação, o x por 5-y, e depois substituir.. só que não deu muito certo.. alguém indica por onde eu começo?
BrunoLima
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Nov 22, 2013 23:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando militar
Andamento: cursando

Re: Sistema de Equações exponenciais (iezzi)

Mensagempor e8group » Ter Nov 26, 2013 22:29

Tome \zeta := y-x^2 ,substituindo-se esta relação na equação , obtemos

2^{-2\zeta} = 100\cdot 5^{2\zeta} ou ainda multiplicando-se esta igualdade por 2^{2\zeta} ,

1 = 100 \cdot 5^{2\zeta} \cdot 2^{2\zeta} = 5^2 \cdot 2^2  \cdot 5^{2\zeta} \cdot 2^{2\zeta}  = 5^{2\zeta + 2} \cdot 2^{2\zeta + 2} =  10^{2\zeta +2 } .

Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Sistema de Equações exponenciais (iezzi)

Mensagempor PedroCunha » Ter Nov 26, 2013 22:44

Veja:

\\

\begin{cases} 2^{2(x^2 - y)} = 100 \cdot 5^{2(y - x^2)} \dots I \\ x + y = 5 \dots II \end{cases}

\\\\

\circ \,\, I: 2^{2x^2 - 2y} = 100 \cdot 5^{2y - 2x^2} \therefore 2^{2x^2 - 2y} = 100 \cdot \frac{1}{5^{2x^2 - 2y}} \therefore \\\\ 2^{2x^2-2y} \cdot 5^{2x^2-2y} = 100 \therefore 10^{2x^2-2y} = 10^2 \therefore 2x^2 - 2y = 2 \therefore x^2 - y = 1 \therefore \\\\ y = x^2 -1

\\\\

 \circ \,\, II: x + x^2 - 1 = 5 \therefore x^2 + x - 6 = 0 \rightarrow \begin{cases} x_1 = \frac{-1 + 5}{2} \therefore x_1 = 2 \\\\ x_2 = \frac{-1 - 5}{2} \therefore x_2 = -3 \end{cases} \\\\

\\ \rightarrow \begin{cases} y_1 = (2)^2 - 1 \therefore y_1 = 3 \\ y_2 = (-3)^2 - 1 \therefore y_2 = 8 \end{cases} 

\\\\

\boxed{\boxed{S \{(2,3), (-3,8)\}}}

Qualquer dúvida é só falar.

Att.,
Pedro
PedroCunha
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Dom Set 23, 2012 11:29
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Sistema de Equações exponenciais (iezzi)

Mensagempor BrunoLima » Ter Nov 26, 2013 23:02

Pedro muito boa sua resolução muito obrigado mais uma vez , as suas resoluções sempre me fazem pensar, ''Cara, como que eu não pensei nisso'' ^^...
Santhiago, tentei resolver o que você me deixou, mas não consegui, a unica coisa que me veio a cabeça foi dividir por um do dois termos a esquerda.. o que,creio eu não ajudaria em nada.. poderia indicar o caminho (mais ainda), para que eu tente resolver da sua maneira?
BrunoLima
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Nov 22, 2013 23:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando militar
Andamento: cursando

Re: Sistema de Equações exponenciais (iezzi)

Mensagempor BrunoLima » Ter Nov 26, 2013 23:46

no caso seria pra fazer.. 2\zeta+2=2



se for isso, Entendi, Obrigado..
BrunoLima
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Nov 22, 2013 23:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: Vestibulando militar
Andamento: cursando

Re: Sistema de Equações exponenciais (iezzi)

Mensagempor PedroCunha » Qua Nov 27, 2013 12:23

Tudo questão de prática Bruno. No ritmo que você está indo, logo logo o Iezzi fica fácil!
PedroCunha
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Dom Set 23, 2012 11:29
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Sistema de Equações exponenciais (iezzi)

Mensagempor e8group » Qua Nov 27, 2013 13:56

BrunoLima escreveu:no caso seria pra fazer.. 2\zeta+2=2



se for isso, Entendi, Obrigado..


Não ,note que 1 = 10^{2\zeta +2 }   \implies  2\zeta +2 = 0  \implies \zeta = -1 e assim ,

y=  -1 + x^2 . Logo , -1+x^2 + x = 5 ou ainda

x^2 + x - 6 = 0 que é a mesma equação obtida pelo colega acima .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D