por manoelcarlos » Qua Ago 21, 2013 18:31
Boa tarde, pessoal;
Perdi algumas aulas no começo do semestre e estou com dificuldade para lembrar de algumas coisas que aprendi no ensino médio. Na equação

=

Resolvi da única forma que "sei", que é a seguinte: tirei o MMC de x-3 e 4 que é exatamente "(x-3) 4" (correto?) e, depois de dividir em baixo e multiplicar em cima, cheguei no seguinte:
4x+8 = 5 (x-3)
4x+8 = 5x - 15
4x - 5x = -15 -8
-1x = -23
x = 23
O valor de x está correto. O que eu não sei é se a forma como resolvi a equação é a mais adequada. Há algum outro meio de resolver isso? Alguém pode indicar alguma forma de se aprender isso?
-
manoelcarlos
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qua Ago 21, 2013 18:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por DanielFerreira » Qua Ago 21, 2013 22:05
Olá Manoel,
seja bem-vindo!
A forma desenvolvida está correta, bem como o valor final!
Note que poderias ter multiplicado cruzado, pois, há uma proporção (igualdade entre duas frações).
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por manoelcarlos » Qui Ago 22, 2013 03:27
danjr5 escreveu:Olá Manoel,
seja bem-vindo!
A forma desenvolvida está correta, bem como o valor final!
Note que poderias ter multiplicado cruzado, pois, há uma proporção (igualdade entre duas frações).
Muito obrigado pela resposta, danjr5. Aos poucos, estou conseguindo lembrar de algumas coisas.
-
manoelcarlos
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Qua Ago 21, 2013 18:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por DanielFerreira » Sáb Nov 02, 2013 09:08
Não há de quê, e, bons estudos!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Não consigo resolver de jeito nenhum.
por gomusalie » Sex Nov 04, 2011 13:59
- 1 Respostas
- 1226 Exibições
- Última mensagem por SsEstevesS

Dom Nov 27, 2011 10:10
Geometria Plana
-
- Não consegui de jeito nenhum
por Evaldo » Sáb Jan 16, 2010 09:08
- 1 Respostas
- 2144 Exibições
- Última mensagem por Molina

Sáb Jan 16, 2010 10:07
Álgebra Elementar
-
- Equação - Como resolver problema com equação
por macedo1967 » Seg Set 25, 2017 10:13
- 3 Respostas
- 8426 Exibições
- Última mensagem por DanielFerreira

Dom Out 08, 2017 20:10
Equações
-
- Será que há um jeito mais fácil???
por rebeca_souza » Ter Dez 08, 2009 15:17
- 2 Respostas
- 1868 Exibições
- Última mensagem por rebeca_souza

Qua Dez 09, 2009 14:41
Geometria Analítica
-
- Eu tento mas nao consigo de jeito nenhum!
por Liliani » Qui Fev 25, 2010 14:50
- 1 Respostas
- 2301 Exibições
- Última mensagem por Molina

Qui Fev 25, 2010 18:45
Desafios Médios
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.