• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação exponencial

Equação exponencial

Mensagempor armando » Qua Abr 03, 2013 04:15

Como posso resolver o seguinte tipo de equação ?

37 = e^x-x \;\;\;  \Longleftrightarrow \;\;\; e^x-x =37

Digitei-a no WolframAlpha, mas não deu a resolução sob a fórmula algébrica, mas apenas através de gráficos, e apresentou as seguinte fórmulas:

Fórmula alternativa:
e^x = x+37

Soluções reais ___ Formas aproximadas:

x=-W\left(-\frac{1}{e^{37}}\right)-37

x=-W_{-1}\left(-\frac{1}{e^{37}}\right)-37


Solução ___ Forma aproximada:

x=-W_{n}\left(-\frac{1}{e^{37}}\right), \;\;\;\;  n\in Z}


Solução ___ Forma exacta:

x\approx-1W_{n}(-8.53305\times10^{-17})-37,\;\;\;   n\in Z}


Valores na Recta Real (o)

_O_______________________________________________O__
.\;\;\;\;\;\;\;\;\;\;\;-30\;\;\;\;\;\;\;\;\;\;-20\;\;\;\;\;\;\;\;\;-10\;\;\;\;\;\;\;\;\;\;\;\;\;\;0



Pelo que andei pesquisando na net o W_{n} é chamado de função W de Lambert, que é usada para resolver equações transcendentais. Achei a coisa demasiado complicada, pois é preciso aplicar logaritmos em ambos os lados da equação. Ou pode ser apenas impressão minha, dado que não estou familiarizado com a dita função,aliás, nem nunca tinha ouvido falar.
Será que a equação que postei só pode ser mesmo resolvida por aquele método ? Não haverá um processo mais fácil ?

Agradecia ajuda dentro do possível.

Att.

Armando
armando
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Abr 01, 2013 16:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.