• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[::Equação Exponencial::] duas operações simples

[::Equação Exponencial::] duas operações simples

Mensagempor Debylow » Ter Nov 13, 2012 18:06

Creio que seja facil , mas quem puder me responder eu agradeço .
{3}^{x}-3.{3}^{-x}=2 e essa outra 81.{27}^{x}={3}^{x}^{2}
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: [::Equação Exponencial::] duas operações simples

Mensagempor e8group » Ter Nov 13, 2012 19:12

Na primeira, multiplica toda equação por 3^x em seguida soma - 2 \cdot 3^{x} dois lados da equação e faça 3^x = y , resolva para y , volte e resolva para x . Ressaltando que y > 0 .

Na segunda equação é importante perceber que 81 = 9 \cdot 9 =  3^2 \cdot 3^2  =  3^{2+2} = 3^4 e 27 =  3 \cdot 9  =  3^3 . diante disso você terá que as bases são iguais , como elas são fixas , então o expoente delas tem de ser iguais para satisfazer a igualdade .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [::Equação Exponencial::] duas operações simples

Mensagempor Debylow » Ter Nov 13, 2012 20:36

[quote="santhiago"]Na primeira, multiplica toda equação por 3^x em seguida soma - 2 \cdot 3^{x} dois lados da equação e faça 3^x = y , resolva para y , volte e resolva para x . Ressaltando que y > 0 .

continuo sem entender essa , obg por me responder, entendi a 2°
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: [::Equação Exponencial::] duas operações simples

Mensagempor MarceloFantini » Ter Nov 13, 2012 20:54

Multiplicando tudo por 3^x temos 3^{2x} -3 = 2 \cdot 3^x. Faça a substituição k = 3^x. Segue que k^2 -3 = 2k. Termine.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [::Equação Exponencial::] duas operações simples

Mensagempor Debylow » Qua Nov 14, 2012 11:32

continuo sem entender a equação , algumas partes eu entendi (onde tem que trocar por K) mas como chega até la que nao entendi . mesmo assim obg. Mas quem puder fazer ela toda acho melhor pra tirar minha dúvida .
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando

Re: [::Equação Exponencial::] duas operações simples

Mensagempor e8group » Qua Nov 14, 2012 12:23

Multiplicando toda equação por 3^x e fazendo 3^x =   k obtemos , k^2 -3 = 2k .Somando - 2k nos dois lados da igualdade , k^2 -3  + (-2k)   = 2k + (-2k)   =   k^2 - 2k - 3 =  0 .Equação do segundo grau , consegue resolver por x = \frac{ - b \pm \sqrt{b^2 - 4ac }   }{2a} ? Basta aplicar a esta equação . Depois volte para 3^x =  k e resolva . Lembrando que k > 0
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [::Equação Exponencial::] duas operações simples

Mensagempor Debylow » Qua Nov 14, 2012 12:42

Finalmente entendi . só me explica por que tenho que multiplicar tudo por {3}^{x} e depois tenho que somar -2K dos dois lados! valeu msm
Debylow
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Nov 13, 2012 17:37
Formação Escolar: ENSINO FUNDAMENTAL I
Andamento: cursando


Voltar para Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59