por Mayra Luna » Sex Nov 09, 2012 11:27
Se 1 + i é uma das raízes de

, em que c e d são coeficientes reais, então uma outra raiz dessa equação é:
A) 1
B) 2
C) 3
D) 4
E) 5
Sempre tenho duvidas na hora de fazer equações de terceiro grau e essa me pareceu ainda mais complicada.
A resposta é C, como resolvo?
-
Mayra Luna
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Dom Out 07, 2012 15:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por MarceloFantini » Sex Nov 09, 2012 11:51
Mayra, primeiro substitua

nesta equação. Depois, lembre-se que o conjugado também é raíz, logo

também satisfaz

. Substitua e resolva para

e

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Sex Nov 09, 2012 12:38
Sim, substitua agora

. Você terá um sistema com duas equações e duas incógnitas envolvendo

e

, que você resolve como outro sistema qualquer.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Mayra Luna » Sex Nov 09, 2012 12:54
-
Mayra Luna
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Dom Out 07, 2012 15:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Sex Nov 09, 2012 15:48
Olá , eu tenho uma idéia que possa lhe ajudar .
Primeiro sabemos que as duas raízes são

e

, vamos descobrir
Observe que sua expressão incial pode ser rescrita como ,
Expandindo os termos de

, e reagrupando vamos obbter :
igualando os coeficientes pois dois polinomios são iguis se e somente se seus coeficientes são correspondentes , segue que ,
a = 1 e que nos interessa ,

. lembrando que ,

e

, finalmente segue que ,

.
Conclusão a outra raíz será
Espero que ajude também , qualquer coisa pergunte .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Mayra Luna » Sex Nov 09, 2012 17:27
Oi!
Desculpa, mas não entendi porque a equação pode ser reescrita dessa forma e como o reagrupamento é feito

Obrigada desde já!
-
Mayra Luna
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Dom Out 07, 2012 15:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por e8group » Sex Nov 09, 2012 20:02
Ok .
Primeiramente podemos escrever esta equação como uma função , seja

, definida por

. Sabemos que quando

,

. Além disso , podemos escrever

como produto de funções . Sejam

e

tal que ,

para

e

seja raiz de

e

sejam raízes de

.
É fácil ver que ,

e

e finalmente

.
Note que não necessariamente

mas como

,orá qualquer número real multiplicado por zero o resultado será zero . Analogamente , concluimos para os outros casos .
Assim segue que ,

. Para estabelecer esta igualdade , os coeficientes correspondentes das funções polinomiais devem ser iguais . (Por que ?? )
Exemplo : Seja

. Agora seja

, perceba que

se , e somente

e

. Este exemplo só foi uma introdução .
Continuando ...
Perceba que podemos escrever nossa função

na forma fatorada , isto é

( Por que ?? )
Assim ,
Conclusão
Da segunda equação vamos ter que ,
Ficou claro ? Qualquer dúvida post algo .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Mayra Luna » Sex Nov 09, 2012 20:20
Ufa! Entendi agora.
Muitíííssimo obrigada!!!!!!
-
Mayra Luna
- Usuário Dedicado

-
- Mensagens: 46
- Registrado em: Dom Out 07, 2012 15:03
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação do 1º Grau - Como montar a equação
por macedo1967 » Sáb Out 07, 2017 12:53
- 1 Respostas
- 7890 Exibições
- Última mensagem por DanielFerreira

Dom Out 08, 2017 20:17
Equações
-
- [Equação Modular] com equação de 2º grau
por paola-carneiro » Qui Abr 05, 2012 15:53
- 2 Respostas
- 3261 Exibições
- Última mensagem por paola-carneiro

Sex Abr 06, 2012 16:23
Funções
-
- Equação do 1 Grau
por luanxd » Ter Jan 26, 2010 00:06
- 3 Respostas
- 5368 Exibições
- Última mensagem por Cleyson007

Qua Jan 27, 2010 20:40
Polinômios
-
- equação do 2º grau
por juniorthai » Seg Fev 08, 2010 12:05
- 2 Respostas
- 11625 Exibições
- Última mensagem por DanielFerreira

Sáb Mar 06, 2010 20:48
Trigonometria
-
- equação do 2º grau
por juniorthai » Qui Fev 11, 2010 08:15
- 6 Respostas
- 8074 Exibições
- Última mensagem por lulopes

Sex Dez 08, 2017 20:05
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.