por ezidia51 » Dom Mar 25, 2018 16:22
Olá fiz este cálculo mas não sei se está correto.Alguém poderia me dizer se está certo?
![\sqrt[2]{\frac{20}{810}}=\sqrt[2]{\frac{2.2.5}{2.3.3.3.3.5}}=\sqrt[2]{\frac{2}{3^2.3^2}}=3.3\sqrt[2]{2}=9\sqrt[2]{2} \sqrt[2]{\frac{20}{810}}=\sqrt[2]{\frac{2.2.5}{2.3.3.3.3.5}}=\sqrt[2]{\frac{2}{3^2.3^2}}=3.3\sqrt[2]{2}=9\sqrt[2]{2}](/latexrender/pictures/2c0705dbd403ae9062fb2b2eac76b10b.png)
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por Gebe » Dom Mar 25, 2018 17:56
Só 1 erro.
Ao simplificar os dois termos "3²" que estavam na raiz tu passou eles ao numerador, quando deveriam permanecer no denominador. Deve ter sido por descuido.
Certo:
![\frac{1}{3*3}\sqrt[2]{\frac{2}{1} }=\frac{1}{9}\sqrt[2]{2} \frac{1}{3*3}\sqrt[2]{\frac{2}{1} }=\frac{1}{9}\sqrt[2]{2}](/latexrender/pictures/996e3ff51e6bfa39330cafb0acbac0ab.png)
-
Gebe
- Colaborador Voluntário

-
- Mensagens: 158
- Registrado em: Qua Jun 03, 2015 22:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia eletrica
- Andamento: cursando
por ezidia51 » Dom Mar 25, 2018 19:31
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calculo das raízes
por nanasouza123 » Sex Set 22, 2017 21:06
- 0 Respostas
- 1110 Exibições
- Última mensagem por nanasouza123

Sex Set 22, 2017 21:06
Equações
-
- Calculo de raizes de uma função
por EREGON » Sex Nov 14, 2014 14:22
- 2 Respostas
- 2165 Exibições
- Última mensagem por adauto martins

Seg Jan 19, 2015 09:56
Funções
-
- Cálculo das raízes de um polinômio
por eu_dick1 » Ter Nov 11, 2014 23:42
- 0 Respostas
- 1534 Exibições
- Última mensagem por eu_dick1

Ter Nov 11, 2014 23:42
Polinômios
-
- [Calculo I] Limites envolvendo raízes.
por Jefferson_mcz » Seg Mar 18, 2013 14:00
- 1 Respostas
- 1596 Exibições
- Última mensagem por young_jedi

Seg Mar 18, 2013 20:35
Cálculo: Limites, Derivadas e Integrais
-
- CÁLCULO DE LIMITE COM RAIZES DE ÍNDICES DIFERENTES
por thiago15_2 » Qui Fev 27, 2014 01:20
- 1 Respostas
- 2327 Exibições
- Última mensagem por young_jedi

Sex Fev 28, 2014 15:15
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.