por IsadoraLG » Qua Set 25, 2013 20:06
Existem aquelas regrinhas para saber a divisibilidade dos números: um divisor de 2 termina com número de par, divisor
de 3 basta somar os números e dar algum divisível de 3, por 6 deve ser divisível ao mesmo tempo por 2 e 3, por 4 basta olhar os
dois últimos digítos do número, por 5 se termina em 5 ou 0...
Mas neste exercício de
máximo divisor comum, a divisão ocorre pelo
número primo 7, e não entendi o que eu deveria ter
observado para "captar" que este era o número certo, eu simplesmente não sabia por qual número deveria dividir. Abaixo dá pra ver melhor isso que estou falando.
(EsPCEx) Qual o maior número pelo qual de deve dividir 1679 e 2352 para que os restos
sejam 41 e 77 respecivamente?1679-41=1638
2352-77=2275
Agora, na conta para obter o mdc, é possível verificar a minha dúvida:
1638, 2275 / 7
234, 325 / 13
18, 25 /18
1, 25 / 25
1, 1
MDC(1638,2275) = 7x13 = 91
Se necessário, segue link da questão, é a núm. 10:
http://www.matematicamuitofacil.com/mdc01.html
-
IsadoraLG
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Ter Ago 27, 2013 18:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Gestão em Recursos Humanos
- Andamento: formado
por Leticia_alves » Qua Set 25, 2013 20:22
Boa noite,
a resolução deste exercício é bem simples. Acredito que a resposta para a sua dúvida seja, o mdc (1638, 2275) é igual ao produto dos fatores comuns e com expoentes menores. Vejamos:
Fatorando 13638 (em números primos!): 1638 = 2 . 3² . 7 . 13.
Fatorando 2275 (em números primos!): 2275 = 5² . 7 . 13.
Assim, Considerando somente os fatores comuns com os menores expoentes, temos que: mdc(1638, 2275) = 7 . 13 = 91.
Que é a resposta do seu problema.
Em contrapartida, se o problema pedisse para calcular o mmc, o processo seria parecido:
1º: fatorar 1638 em fatores primos.
2º: fatorar 2275 em fatores primos.
3º: Considerar os fatores comuns e não comuns, com os maiores expoentes.
Assim, o mmc(1638, 2275) = 2 . 3² . 5² . 7 . 13 = 409950.
Bom, é isso. Se continuar com dúvida escreva de novo.
Espero ter ajudado!
Abraços
-
Leticia_alves
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Sex Jun 14, 2013 19:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por IsadoraLG » Qui Set 26, 2013 16:51
Entendi sim! O que tinha complicado é que na resolução mostrava a fatoração dos dois números ao mesmo tempo, nesse caso eu não iria saber que era para fatorar por sete, mas fatorando separados como vc fez, ficou mais fácil mesmo! Obrigada! =3
-
IsadoraLG
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Ter Ago 27, 2013 18:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Gestão em Recursos Humanos
- Andamento: formado
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida bem simples
por rodsales » Dom Ago 30, 2009 11:03
- 1 Respostas
- 1329 Exibições
- Última mensagem por Marcampucio

Dom Ago 30, 2009 17:31
Problemas do Cotidiano
-
- dúvida bem simples
por Interkid » Seg Fev 01, 2016 17:24
- 0 Respostas
- 1302 Exibições
- Última mensagem por Interkid

Seg Fev 01, 2016 17:24
Matemática Financeira
-
- DÚVIDA EM JUROS SIMPLES
por maria luisa » Seg Jul 25, 2011 11:20
- 2 Respostas
- 2008 Exibições
- Última mensagem por maria luisa

Ter Jul 26, 2011 12:27
Matemática Financeira
-
- Derivada - Duvida simples
por iceman » Ter Set 18, 2012 19:06
- 1 Respostas
- 1482 Exibições
- Última mensagem por Renato_RJ

Ter Set 18, 2012 19:20
Cálculo: Limites, Derivadas e Integrais
-
- JUROS SIMPLES - DUVIDA
por pipa55 » Qui Nov 07, 2013 15:18
- 2 Respostas
- 2420 Exibições
- Última mensagem por pipa55

Qui Nov 07, 2013 17:38
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.