• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Bala para cada neto

Bala para cada neto

Mensagempor andersonsouza » Seg Fev 11, 2013 16:01

O problema abaixo encontre em um livro de 6º ano (5ª série). Como os alunos só verão o conceito de equações no próximo livro, presumo que há como solucioná-lo sem o uso de sistemas de equações do 1º grau. Alguém pode me ajudar?

- Se vovó Marta der 3 balas a cada um de seus netos, sobrarão 14 balas. Se ela der 5 balas a cada um, faltarão 10 balas. Quantos netos tem a vovó Marta? Quantas balas ela tem? E se ela quiser repartir em números iguais?
andersonsouza
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Fev 09, 2013 11:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Bala para cada neto

Mensagempor young_jedi » Seg Fev 11, 2013 20:31

vamos dizer que o total de netos é x

portanto

3x+14=5x-10

que é uma simples equação do primeiro grau, não um sistema, acredito que assim possa ser resolvido
comente qualquer coisa.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Bala para cada neto

Mensagempor andersonsouza » Seg Fev 11, 2013 20:50

Comparando assim da para chegar ao resultado. Contudo, acho que deve ter um modo que não envolva variávies. Veja só um problema resolvido que encontrei no mesmo livro deste a cima:

"Rita tinha 48 figurinhas e as deu a um menino e a uma menina, de modo que o menino recebeu o dobro do que coube à menina. Quantas figurinhas ganhou cada um?


-RECEBER O DOBRO É COMO RECEBER POR DOIS. PORTANTO, 48 DEVE SER DIVIDIO EM TRÊS PARTES IGUAIS.

48 : 3 = 16 ---- DIVIDIENDO 48 POR 3, CADA PARTE CORRESPONDE A 16 FIGURINHAS


ENTÃO, A MENINA RECEBEU 1 PARTE, OU SEJA, 16 FIGURINHAS. O MENINO RECEBEU 32 FIGURINHAS, OU SEJA, 2 x 16 = 32"



Utilizando variáveis, para mim é a forma mais simples para se chegar à resolução. Porém, como já dito, o problema encotra-se em um livro de 6º ano (5ª série) e eles ainda não viram o conceito de equação.

Estou a quebrar a cabeça...
andersonsouza
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Fev 09, 2013 11:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado

Re: Bala para cada neto

Mensagempor young_jedi » Seg Fev 11, 2013 22:23

entendi amigo

bom eu pensei assim,

se nos temos que cada neto tem 3 balas para que fiquem com 5 é necessario que cada um receba 2, se sobraram 14
então 14:2=7

portanto agora 7 netos possuem 5 balas e o restante apenas 3, como faltam 10 balas e cada um dos demais netos precisam ganhar 2 balas então

10:2=5

portanto tem cinco netos que tem somente 3 balas, portanto o total de netos sera

7+5=12

acho que assim da para entender
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Bala para cada neto

Mensagempor andersonsouza » Seg Fev 11, 2013 23:24

young_jedi escreveu:entendi amigo

bom eu pensei assim,

se nos temos que cada neto tem 3 balas para que fiquem com 5 é necessario que cada um receba 2, se sobraram 14
então 14:2=7

portanto agora 7 netos possuem 5 balas e o restante apenas 3, como faltam 10 balas e cada um dos demais netos precisam ganhar 2 balas então

10:2=5

portanto tem cinco netos que tem somente 3 balas, portanto o total de netos sera

7+5=12

acho que assim da para entender



Perfeito, amigo. Era algo assim que eu estava tentando passar para o papel.


Muito obrigado.
andersonsouza
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Fev 09, 2013 11:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?