• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Qui Mai 13, 2021 15:49

(ITA-1953)demonstrar que o resto,na divisao de uma soma por um numero,é o resto das somas dos restos das parcelas.
deduzir que um numero é divisivel por 9 quando,e somente quando,a soma dos seus algarismo for divisivel por 9.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Qui Mai 13, 2021 16:28

soluçao

seja soma dos {a}_{i},i\in N... dividindo p,um numero qualquer...

D=({a}_{n}+{a}_{n-1}+...{a}_{1}+{a}_{0})/p=

({a}_{n}/p)+({a}_{n-1}/p)+...({a}_{1}/p)+({a}_{0}/p)...

usando divisao eucliana,teremos

\exists q/(a/p)=p.q+r

logo

D=(p.{q}_{n}+{r}_{n})+(p.{q}_{n-1}+{r}_{n})+...+p.{q}_{0}+{r}_{0})

=p.({q}_{n}+...{q}_{0})+({r}_{n}+...+{r}_{0})=p.Q+R...

R=({r}_{n}+...+{r}_{0})...

seja N um multiplo de 9,entao N=9.k...k\in Z...

podemos escrever N,como

N={a}_{n}.{10}^{n}+...+{a}_{0}.{10}^{0}

onde os {a}_{n}\in (0,1,...,9) sao os alarismo de N, na base decimal(base 10)...
N={a}_{n}{a}_{n-1}...{a}_{0}

fazendo,como exemplo 1000={10}^{4}=(9999+1)={9}^{4}+1...
teremos

N={a}_{n}.{10}^{n}+...+{a}_{1}.{10}^{1}+{a}_{0}{10}^{0}

={a}_{n}.({9}^{n}+1)+...+{a}_{1}.({9}^{1}+1)+{a}_{0}.1

=({a}_{n}.{9}^{n}+{a}_{n})+...+({a}_{1}.{9}^{1}+{a}_{1})+{a}_{0}

=({a}_{n}.{9}^{n}+...+9)+({a}_{n}+...+{a}_{1}+{a}_{0})

=9.({9}^{n-1}+...+1)+({a}_{n}+...+{a}_{0})

=9.p+({a}_{n}+...+{a}_{0})

como N=9.k,teremos

({a}_{n}+...+{a}_{0})=9(k-p)=9.n...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Qua Jun 09, 2021 10:50

uma correçao

1000=999+1=9.10^2+9.10+9+1=9.(10^2+10+1)+1

N={a}_{n}10^n+...+{a}_{1}.10^1+{a}_{0}.10^0

N={a}_{n}(9.((10^{n-1})+...+1))+{a}_{n-1}...+{a}_{1}(9+1)+a_0

N=9.({a}_{n}10^{n-1})+...+9({a}_{n-1})+...+9.{a}_{1}+(a_n+...+a_0)

N=9.p+({a}_{n}+...+a_0)

9.(k-p)=a_n+...+a_0\Rightarrow a_n+...+a_0=9.n
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?