por iuggui » Ter Mai 29, 2018 20:42
Número primo
[...]
Para todo primo p seja p# o produto de todos os números
primos q inferiores ou iguais a p. De acordo com a terminologia
empregada por Dubner (1987), p# é chamado o primorial de p.[...]
Dadas as afirmativas sobre primoriais de números primos,
considerando estritamente a definição e a simbologia
estabelecidas no texto,
I. O primorial de um número primo é um número primo.
II. Se p é um número primo maior que 2, a soma dos algarismos
do número p# + 3 é um número múltiplo de 3.
III. 8# = 2x3x5x7 = 210.
verifica-se que está(ão) correta(s)
A) I, II e III.
B) I e III, apenas.
C) I e II, apenas.
D) III, apenas.
E) II, apenas.
-
iuggui
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Mai 29, 2018 20:39
- Formação Escolar: PÓS-GRADUAÇÃO
- Andamento: formado
por DanielFerreira » Qui Mai 31, 2018 11:46
Olá
Iuggui, seja bem-vindo(a)!
Na
afirmativa I, entendo que seja FALSA, pois de acordo com o texto,

(primordial) é o produto dos números primos menores ou iguais a

. Assim, como exemplo, podemos tomar qualquer primo. Seja

, daí,
Como pode notar, 30 não é primo!
Quanto à
afirmativa II, VERDADEIRA. Veja:
Se

é um primo maior que 3, então o primordial

será um múltiplo de 3, com efeito,

também será múltiplo de 3.
Portanto,

Isto é,

, de fato, é um múltiplo de 3. Logo, temos que a soma de seus algarismos é múltiplo de 3 (regra de divisibilidade por 3).
Por fim, a
afirmativa III:

Ou seja, VERDADEIRA!
Não tenho dúvidas que as afirmativas II e III sejam verdadeiras, no entanto, não há essa opção! Com isso, considero a alternativa A)...
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Demonstração (número primo)
por Shetach Hefker » Qui Jan 10, 2013 19:01
- 4 Respostas
- 6306 Exibições
- Última mensagem por Shetach Hefker

Qui Jan 10, 2013 22:48
Aritmética
-
- Como reconhecer se um número é primo?
por Kelvin Brayan » Dom Abr 24, 2011 15:16
- 2 Respostas
- 3356 Exibições
- Última mensagem por Kelvin Brayan

Dom Abr 24, 2011 16:28
Álgebra Elementar
-
- Subgrupo normal e numero primo
por EANDRIOLI » Qua Ago 06, 2014 23:47
- 1 Respostas
- 1769 Exibições
- Última mensagem por adauto martins

Qui Nov 27, 2014 12:13
Álgebra Elementar
-
- Questão, número irracional.
por LuizCarlos » Sex Mar 16, 2012 18:49
- 1 Respostas
- 3935 Exibições
- Última mensagem por MarceloFantini

Sex Mar 16, 2012 22:27
Álgebra Elementar
-
- Questão de Concurso-Número Complexos
por Pri Ferreira » Qua Mar 21, 2012 13:44
- 1 Respostas
- 1471 Exibições
- Última mensagem por LuizAquino

Sáb Mar 31, 2012 15:31
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.