• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[potência] Questao UFSC

[potência] Questao UFSC

Mensagempor yuripa » Seg Ago 17, 2015 01:46

Ola, estou tentando resolver essa questao da ufsc que basicamente envolve apenas conceitos de potencia. Eu consigo anular o B e o C, mas nunca consigo cortar o A completamente, e como a resposta se trata de um numero puro, devo estar fazendo algo muito errado.

Resposta = 90.

OBS: Nao da pra ver direito na imagem, mas o C mais da esquerda é elevado a 8/3.
Anexos
1209381410.jpg
UFSC
yuripa
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Ago 17, 2015 01:40
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [potência] Questao UFSC

Mensagempor nakagumahissao » Seg Ago 17, 2015 11:43

\frac{120}{8}\left[2^8\cdot 4^{-3} \cdot \left(a^{4} \cdot b^{-2} \cdot  c^{\frac{8}{3}} \right)^{3} \cdot 3^2 \cdot \left(\frac{b^3 \cdot a^{-4}}{a^{1} \cdot b^{0} \cdot c^{4} \right)^{2}} \right]^{\frac{1}{2}}

Vamos resolver primeiramente o que se encontra dentro dos parênteses para que possamos eliminá-los:

\frac{120}{8}\left[2^8\cdot 4^{-3} \cdot a^{12} \cdot b^{-6} \cdot  c^{8} \cdot 3^2 \cdot \frac{b^6 \cdot a^{-8}}{a^{2} \cdot b^{0} \cdot c^{8}} \right]^{\frac{1}{2}}

Agora vamos passar o 1/2 multiplicando por todas as pontências dentro do colchetes para que possamos eliminar os colchetes e sabendo-se que b^0 = 1 e 120/8 = 15, vamos já substituir na expressão:

15\left(2^4\cdot 4^{-\frac{3}{2}} \cdot a^{6} \cdot b^{-3} \cdot  c^{4} \cdot 3^{1} \cdot \frac{b^3 \cdot a^{-4}}{a^{1} \cdot 1 \cdot c^{4}} \right)

Na potenciação, quando se tem uma multiplicação para bases iguais, repete-se a base e somam-se os expoentes. Para a divisão onde as bases são iguais, repete-se a base e diminuem-se os expoentes. Assim:

15\left(2^4\cdot 2^{-2\frac{3}{2}} \cdot 3^{1} \cdot \frac{ c^{4} \cdot b^0 \cdot a^{2}}{a^{1} \cdot 1 \cdot c^{4}} \right)

15\left(2^4\cdot 2^{-3} \cdot 3 \cdot \frac{c^{4}a}{c^{4}} \right)

15\left(2^1 \cdot 3 \cdot c^{4 - 4}a} \right)

15\left(2 \cdot 3 \cdot c^{0}a} \right)

15\left(2 \cdot 3 \cdot 1 \cdot a} \right)

15\left(6a \right) = 90a

\blacksquare
Editado pela última vez por nakagumahissao em Ter Ago 18, 2015 03:13, em um total de 3 vezes.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando

Re: [potência] Questao UFSC

Mensagempor yuripa » Seg Ago 17, 2015 14:16

Ola, primeiramente obrigado pela resposta.

Quando voce passou o 1/2 multiplicando, por que o a^2 que estava em baixo nao foi multiplicado tambem? Ele nao deveria ter virado a^1? O c^8 que estava do lado foi, e virou c^4, nao entendi por que o a nao foi.
yuripa
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Ago 17, 2015 01:40
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [potência] Questao UFSC

Mensagempor nakagumahissao » Ter Ago 18, 2015 03:15

Bem observado! Você têm razão.

Fiz as correções necessárias. Acredito que a resposta do gabarito esteja faltando este "a".


Obrigado



Sandro
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}