• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Razão: Gratificação por Antiguidade

Razão: Gratificação por Antiguidade

Mensagempor ShadowOnLine » Sex Nov 07, 2014 22:12

Bons dias, amigos. Eu recebi a seguinte questão, e gostaria que ela fosse avaliada, para saber se minha forma de pensar está correta.

QUESTÃO
Luiza, Sérgio e Ramon trabalham no mesmo colégio há 10, 8 e 4 anos, respectivamente.
O colégio distribuiu uma gratificação de R$ 6.600,00 para esses três funcionários em partes diretamente proporcionais ao tempo de serviço de cada um.
Quanto cada um receberá de gratificação?



Ora, eu pensei, se cada um receberá pelo tempo trabalhado, devo saber quanto da gratificação a ser distribuída vale um ano, e depois multiplicar este resultado pelo tempo de trabalho de cada uma das pessoas.

Então eu fiz 10 + 8 + 4 = 22 para saber em quantas partes a gratificação deverá ser divida.

Daí fiz 6600 / 22 = 300 que é o valor da gratificação por cada ano trabalhado.

Segui para a resposta:
Luiza receberá 300 * 10 = R$ 3.000,00
Sérgio receberá 300 * 8 = R$ 2.400,00
Ramon receberá 300 * 4 = R$ 1.200,00

Obrigado antecipado.
ShadowOnLine
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Abr 13, 2011 23:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Letras com Inglês
Andamento: formado

Re: Razão: Gratificação por Antiguidade

Mensagempor ShadowOnLine » Sáb Nov 08, 2014 21:24

Pensando melhor sobre a questão que eu mesmo postei, imaginei que se a gratificação é DIRETAMENTE proporcional, então o valor total da gratificação e do tempo trabalhado devem estar ambos no numerador. Assim a resolução da questão fica muito mais elegante.

Luíza receberá R$ 3.000,00
\frac{6600}{1} X \frac{10}{22} = \frac{66000}{22} = 3000


Sérgio receberá R$ 2.400,00
\frac{6600}{1} X \frac{8}{22} = \frac{6600}{1} X \frac{4}{11} = 600 X 4 = 2400


Ramon receberá R$ 1.200,00
\frac{6600}{1} X \frac{4}{22} = \frac{6600}{1} X \frac{2}{11} = 600 X 2 = 1200
ShadowOnLine
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Abr 13, 2011 23:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Letras com Inglês
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59