por phmarssal » Qua Nov 20, 2013 14:37
Olá gostaria de tirar uma dúvida,vou postara pergunta
Admita dois números inteiros positivos, representados por a e b. Os restos das divisões de a e b por 8 são, respectivamente, 7 e 5.
Determine o resto da divisão do produto a.b por 8.
Eu já vi nesse próprio site como se faz,mas minha duvida ficou na resolução
minha duvida é como montaram essas 2 equações aqui
a = 8.x + 7
b = 8.y + 5
não entendi pq eles pegaram a divisão e multiplicaram para um numero x e somaram com o resto,alguem pode explicar ?
-
phmarssal
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Qua Nov 20, 2013 14:20
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Pessoa Estranha » Qui Nov 21, 2013 14:49
Olá !
Suponha, dois números

e

tais que deseja-se dividir por

e

, respectivamente. Considere,

e

os respectivos quocientes. Além disso, tome

e

da mesma forma. Temos que

e

podem ser escritos na forma:


Usando o método da chave, por exemplo, você consegue visualizar isto melhor.
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão UERJ
por phmarssal » Qua Nov 20, 2013 14:34
- 3 Respostas
- 2578 Exibições
- Última mensagem por Russman

Sáb Dez 07, 2013 00:25
Aritmética
-
- (UERJ) - Questão de função linear
por Levi23 » Qua Mar 11, 2009 22:28
- 1 Respostas
- 5221 Exibições
- Última mensagem por Levi23

Qua Mar 11, 2009 22:29
Funções
-
- Questão da Uerj função linear
por gustavoluiss » Seg Fev 07, 2011 22:24
- 12 Respostas
- 7379 Exibições
- Última mensagem por Santa Lucci

Ter Fev 08, 2011 01:24
Funções
-
- Questão da UERJ sobre função do 1º grau
por kamillanjb » Qua Fev 16, 2011 19:47
- 7 Respostas
- 5984 Exibições
- Última mensagem por kamillanjb

Dom Fev 27, 2011 20:10
Funções
-
- Uerj 2001 - questão sobre conjuntos
por sspmat61 » Qui Mar 10, 2011 15:16
- 4 Respostas
- 14629 Exibições
- Última mensagem por Abelardo

Sex Mar 11, 2011 22:43
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.