• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aproximação

Aproximação

Mensagempor Thais Aquino Lima » Qui Fev 28, 2013 19:28

Olá Professores,tudo bem?

Possuo uma pequena dúvida sobre aproximação.Minha dúvida consiste em:

Devo fazer a aproximação de Duas Casas e Uma Casa,e suponhamos que tenho o Número 1,746

6 é maior que 5,logo adiciono ma unidade ao 4,determinando a aproximação de Duas Casas:

1,75= Duas Casas

Porém,quando eu for realizar a aproximação de uma casa,devo considerar o número 4 como antecedente do 7 (Prevalecendo o número 7) ou devo considerar como 5 (Adicionando uma unidade e localizando o Número 8)?

Desde então agradeço
Att.
Thais
Thais Aquino Lima
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Fev 11, 2013 11:44
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: 8º ano
Andamento: cursando

Re: Aproximação

Mensagempor Cleyson007 » Sex Mar 01, 2013 09:13

Olá, bom dia!

Thaís, acredito que isso irá lhe ajudar bastante: http://www.infoescola.com/matematica/ap ... numericos/

Leia e surgir dúvidas estou a disposição :y:

Att,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}