• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão

Questão

Mensagempor dexter » Qua Fev 13, 2013 10:57

É uma questão para pesquisar, mas não sei como resolver ou qual método utilizar:

Uma empresa do ramo de construção de máquinas lançou um novo produto no mercado, denominado aqui como produto A. A diretoria deseja saber qual deverá ser a produção total deste produto no oitavo mês após o lançamento e qual a previsão de lucro, receita e custo.
Os dados disponíveis sobre estes produtos estão abaixo:
1- O custo variável de cada peça é $12,50
2- o preço de venda é de $25,00 a unidade
3- Na tabela abaixo encontramos mais alguns dados disponíveis sobre este produto:

Acréscimo na produção diária: +8 unidades mês 2, +10 unidades mês 3, +12 unidades mês 4, +14 unidades mês 5.

Obs: a produção total chegou a 50 unidades no final do quinto mês de trabalho.
dexter
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Fev 04, 2013 10:49
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.