por andersonsouza » Seg Fev 11, 2013 16:16
Tenho 20 moedas. Algumas delas são de 20 centavos e outras de 10 centavos. Se as moedas de 10 centavos que eu tenho fossem as de 20, e as de 20 fossem as de 10, eu teria 60 centavos a mais do que eu tenho agora. Quantas moedas de 10 e quantas moedas de 20 eu tenho?
SOLUÇÃO POR SISTEMAS DE EQUAÇÕES
x + y = 20 => x = 20 - y
10x + 20y = 20x + 10y - 60
10(20 - y) + 20y = 20(20 - y) + 10y - 60
200 - 10y + 20y = 400 - 20y + 10y -60
10y + 10y = 400 - 200 - 60
y = 140 / 20 => y = 7
x = 20 - 7 => x = 13
Há alguma solução sem uso de sistemas??
-
andersonsouza
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sáb Fev 09, 2013 11:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: formado
por young_jedi » Seg Fev 11, 2013 20:47
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por andersonsouza » Seg Fev 11, 2013 23:46
E neste, amigo. Tem como fazer algo parecido com os problemas da bala?
Tentarei rascunhar algo aqui, mas aguardo, mais uma vez, sua ajuda =)
-
andersonsouza
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sáb Fev 09, 2013 11:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: formado
por young_jedi » Ter Fev 12, 2013 11:15
então, esse eu achei mais complicado um pouco
pensamos o seguinte se ao transformar cada moeda de 10 em 20 e cada de 20 em moedas de 10 se a quantidade de moedas for igauis nos continuamos com o mesmo montante, mais se o numero de moedas de 10 for maior, para cada uma dessas moedas a mais nos ganhamos mais 10 centavos na tranformação, então a quantidade de moedas de 10 em excesso vezes 10 centavos da o nosso ganho total então

portanto nos temos que existem 6 moedas de 10 a mais doque de 20, se nos temos um total de 20 moedas
então 20-6=14
portanto 14 é o dobro da quantia de moedas de 20, então

portanto 7 é a quantidade de moedas de 20 e a quantidade de moedas de 10 é
7+6=13
pareceu meio confuso, mais foi a melhor maneira que eu encontrei
se voce encontrar uma melhor, por favor, compartilhe.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Moedas
por admin » Sex Jul 20, 2007 15:08
- 13 Respostas
- 9390 Exibições
- Última mensagem por Neperiano

Qua Out 29, 2008 20:59
Desafios Fáceis
-
- problema das moedas
por marquessbr » Qua Abr 04, 2012 22:04
- 2 Respostas
- 1998 Exibições
- Última mensagem por marquessbr

Qui Abr 05, 2012 09:19
Estatística
-
- Quantas moedas no cofre?
por roberto Marinho » Sex Out 16, 2009 04:38
- 3 Respostas
- 3692 Exibições
- Última mensagem por Molina

Seg Out 19, 2009 14:10
Sistemas de Equações
-
- [Lançamento de moedas] Probabilidade
por analuzia » Qua Nov 07, 2012 16:33
- 2 Respostas
- 2712 Exibições
- Última mensagem por analuzia

Qua Nov 07, 2012 17:04
Probabilidade
-
- [Probabilidade de esferas] condicionadas com moedas
por Thebigspire » Qua Set 24, 2014 01:31
- 1 Respostas
- 3705 Exibições
- Última mensagem por Thebigspire

Sex Out 03, 2014 00:40
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.