por lucas77 » Qua Jan 09, 2013 20:18
Olá!
A minha dúvida é quanto a esta regra da potenciação. Não sei como resolvê-la e gostaria que vocês pudessem me explicar esta regra por favor.

Por exemplo:

Como resolver isto?
Obrigado!
-
lucas77
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Jan 09, 2013 20:02
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Curso Técnico em Química
- Andamento: cursando
por Russman » Qua Jan 09, 2013 22:05
Em geral, os números decimais podem ser expressos como frações , chamadas de frações geratrizes. É bem verdade que os decimais se devem a uma motivação fracionária. Assim, basta que você escreva o número em forma de fração e aplique a propriedade exponencial para esta. Uma fração elevada a um certo número equivale a você elevar o numerador e o denominador a este numero e , disto, obter o resultado.
Vou fazer um exemplo:

Como eu disse podemos escrever

, de forma que

.
Agora, lembre-se que

,

e que
![a^{\frac{b}{c}} = \sqrt[c]{a^b} a^{\frac{b}{c}} = \sqrt[c]{a^b}](/latexrender/pictures/69f4fedb047bcc9f5e0bdb204df3cc71.png)
.
Assim,
![3^{-\frac{1}{4}} = \frac{1}{3^{\frac{1}{4}}} = \frac{1}{\sqrt[4]{3}} 3^{-\frac{1}{4}} = \frac{1}{3^{\frac{1}{4}}} = \frac{1}{\sqrt[4]{3}}](/latexrender/pictures/f138349facd07151117939ea08904646.png)
e
![10^{-\frac{1}{4}} = \frac{1}{10^{\frac{1}{4}}} = \frac{1}{\sqrt[4]{10}} 10^{-\frac{1}{4}} = \frac{1}{10^{\frac{1}{4}}} = \frac{1}{\sqrt[4]{10}}](/latexrender/pictures/d104650c8d4214575a49c3c82b84e296.png)
. Portanto,

![= \frac{\frac{1}{\sqrt[4]{3}}}{\frac{1}{\sqrt[4]{10}}} = \frac{1}{\sqrt[4]{3}}.\frac{\sqrt[4]{10}}{1} = \frac{\sqrt[4]{10}}{\sqrt[4]{3}} = \frac{\frac{1}{\sqrt[4]{3}}}{\frac{1}{\sqrt[4]{10}}} = \frac{1}{\sqrt[4]{3}}.\frac{\sqrt[4]{10}}{1} = \frac{\sqrt[4]{10}}{\sqrt[4]{3}}](/latexrender/pictures/a809a8f249d8ac132d40cdfb6ceb65d8.png)
Agora basta racionalizar a fração.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Aritmética
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [potenciação] raiz cúbica com potenciação
por JKS » Qua Mar 06, 2013 17:41
- 2 Respostas
- 2098 Exibições
- Última mensagem por JKS

Qui Mar 14, 2013 16:43
Álgebra Linear
-
- [potenciação] módulo com potenciação
por JKS » Qua Mar 06, 2013 17:54
- 2 Respostas
- 1610 Exibições
- Última mensagem por JKS

Qui Mar 14, 2013 16:53
Equações
-
- POTENCIAÇÃO
por DANIELA » Sex Set 25, 2009 16:48
- 5 Respostas
- 3515 Exibições
- Última mensagem por DanielFerreira

Seg Set 28, 2009 10:20
Álgebra Elementar
-
- potenciação
por leandrofelip » Ter Fev 23, 2010 00:10
- 1 Respostas
- 1838 Exibições
- Última mensagem por Marcampucio

Ter Fev 23, 2010 12:56
Sistemas de Equações
-
- POTENCIACAO
por CaAtr » Ter Mar 09, 2010 20:23
- 3 Respostas
- 2158 Exibições
- Última mensagem por CaAtr

Ter Mar 09, 2010 22:17
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.