• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Associatividade e comutatividade de operações

Associatividade e comutatividade de operações

Mensagempor DannN1 » Sáb Nov 26, 2016 11:16

Seja E um conjunto não vazio e P(E)={x/xcE}.
Podemos definir operações em P(E).Dados X,Y pertence ao conjunto P(E).
XUYcE e X intersecção YcE.

Mostre que União e Intersecção são associativas e comutativas.

Boa tarde pessoal. Desculpem pela escrita.

Algo que eu sei sobre operação da associativa precisa de mais uma termo "Z" para aplicar a definição. Mas não sei como usá-lo.

Atenciosamente Danilo
DannN1
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Nov 26, 2016 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Associatividade e comutatividade de operações

Mensagempor adauto martins » Dom Nov 27, 2016 18:14

uniao:
propriedade associativa:dados X,Y,Z \in E,teremos:
X\bigcup_{}^{}(Y\bigcup_{}^{}Z)=(X\bigcup_{}^{}Y)\bigcup_{}^{}Z...para se provar uma igualdade em conj.teremos q. provar q.A=B\Rightarrow A\supset B,A\subset B,farei a ida...ou seja:
X \bigcup_{}^{}(Y\bigcup_{}^{}Z)\subset(X\bigcup_{}^{}Y)\bigcup_{}^{}Z...logo,dado um elemento a \in X\bigcup_{}^{}(Y\bigcup_{}^{}Z)\Rightarrow a\in X (V) ,a\in (Y\bigcup_{}^{}Z)\Rightarrow a\in X (V),a\in Y(V),a\in Z\Rightarrow (a\in X (V)a\in Y)(V)a\in Z\Rightarrow a\in (X\bigcup_{}^{}Y)(V)a\in Z\Rightarrow a\in (X\bigcup_{}^{}Y)\bigcup_{}^{}Z\Rightarrow X\bigcup_{}^{}(Y\bigcup_{}^{}Z)\subset (X\bigcup_{}^{}Y)\bigcup_{}^{}Z...,onde (V) conectivo "ou",(\Lambda)conectivo "e"...
comutatividade:
farei a comutatividade da intersecçao:
X\bigcap_{}^{}Y=Y\bigcap_{}^{}X...,dados a\in X\bigcap_{}^{}Y\Rightarrow a\in X (\Lambda),a\in Y\Rightarrow \Rightarrow a\in Y(\Lambda),a\in X\Rightarrow a\in(Y\bigcap_{}^{}X)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.