• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Sex Jul 15, 2016 14:48

mostre que:
({x}_{1}+{x}_{2}+...+{x}_{k})/k\geq \sqrt[k]{({x}_{1}.{x}_{2}.....{x}_{k})},onde
{x}_{i}\geq 0,{x}_{i}\in\Re...i,k\in N...
soluçao:
vamos tomar {A}_{k}=({x}_{1}+...+{x}_{k})/k...{G}_{k}=\sqrt[k]{({x}_{1}...{x}_{k}},segue q.:
{A}_{1}\geq {G}_{1}({x}_{1}\geq {x}_{1})...{A}_{2}\geq {G}_{2}(({x}_{1}+{x}_{2})/2\geq \sqrt[]{({x}_{1}.{x}_{2})}),prove isso!...tomaremos entao:
({A}_{k}+{G}_{k})/2\geq \sqrt[]{({A}_{k}.{G}_{k})}[Unparseable or potentially dangerous latex formula. Error 2 ]{({A}_{k}+{G}_{k})}^{2}\geq 4.{A}_{k}.{G}_{k}\Rightarrow {A}_{k}^{2}+2.{A}_{k}.{G}_{k}+{G}_{k}^{2} \geq 4.{A}_{k}.{G}_{k}\Rightarrow {A}_{k}^{2}-2.{A}_{k}.{G}_{k}+{{G}_{k}}^{2}\geq 0{({A}_{k}-{G}_{k})}^{2}\geq 0\Rightarrow {A}_{k}\geq {G}_{k}...,pois se tomarmos
{A}_{k}\leq {G}_{k},contaria a condiçao de {A}_{2}\geq {G}_{2}...logo,
({x}_{1}+...+{x}_{k})/k\geq \sqrt[k]{({x}_{1}....{x}_{k})}...cqd...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}