• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matéria de Divisibilidade e Congruências

Matéria de Divisibilidade e Congruências

Mensagempor EREGON » Ter Mai 12, 2015 11:49

Olá,

gostaria de saber qual o melhor caminho a tomar para este exercício.

Dados dois numeros primos p e q distintos e a um multiplo de p, mostre que para qualquer
n pertencente a N tem-se:

mmc(p, a) | mmc(p + na, a)

Obrigado

Paulo
EREGON
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 10, 2014 16:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando

Re: Matéria de Divisibilidade e Congruências

Mensagempor adauto martins » Qua Mai 13, 2015 13:24

MMC(p+a,a)={{p}_{1}}^{max(p+na,a)}.{p}_{2}^{max(p+na,a)}....{p}_{n}^{max(p+na,a)}=
{p}_{1}}^{max(p,a)}....{{p}_{n}}^{max(p,a)}.{{p}_{1}}^{max(na,a)}}....{{p}_{n}}^{max(na,a)}=
{p}_{1}}^{max(p,a)}....{{p}_{n}}^{max(p,a)}.k\Rightarrow MMC(p+a,a)=k.MMC(p,a),k\in Z...onde
{p}_{1},{p}_{2},...,{p}_{n}sao primos e max(p,a) eh o expoente de maior valor na decomposiçao em fatores primos...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.