• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resto da divisão [Divisibilidade]

Resto da divisão [Divisibilidade]

Mensagempor EREGON » Ter Mai 12, 2015 11:35

Olá,

gostaria de obter ajuda para o seguinte exercício.

Prove que {2}^{32} + 1 e {2}^{4} + 1 são primos entre si

Obrigado

Paulo
EREGON
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 10, 2014 16:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando

Re: Resto da divisão [Divisibilidade]

Mensagempor adauto martins » Qua Mai 13, 2015 13:38

MDC({2}^{32}+1,{2}^{4}+1)={2}^{2}+1=5 \neq 1
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Resto da divisão [Divisibilidade]

Mensagempor adauto martins » Qua Mai 13, 2015 15:58

uma correçao....
MDC({2}^{34}+1,17)=5.17=85\neq 1
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Resto da divisão [Divisibilidade]

Mensagempor adauto martins » Qua Mai 13, 2015 19:16

eita,mais uma correçao(erro federal esse meu...)
MDC({2}^{34}+1,17)=1,pois o num.{2}^{34}+1 nao e divisivel por 17...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Resto da divisão [Divisibilidade]

Mensagempor EREGON » Qui Mai 14, 2015 14:51

Olá,

obrigado. Existe alguma demonsttração a aplicar a este exercício(potencias) para provar o mesmo? Ou é só fazer as contas?

Porque o problema se põe em números com pontencias muito grandes, nestes casos, qual o melhor metodo para resolver?

Paulo
EREGON
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 10, 2014 16:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando

Re: Resto da divisão [Divisibilidade]

Mensagempor adauto martins » Qui Mai 14, 2015 19:44

caro EREGON,
tem o teorema de euler...mas pra usa-lo tem q. aprimorar o conhecimento de congruencias...
se MDC(a,b)={a}^{{\varphi}_{n}}\equiv 1mod(n)...onde {\varphi}_{n}={{Z}_{n}}^{*}={a\in {Z}_{n}/MDC(a,n)=1}...{Z}_{n} eh o conjunto dos restos das divisoes dos inteiros por n...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: