• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Resto da divisão [Divisibilidade]

Resto da divisão [Divisibilidade]

Mensagempor EREGON » Ter Mai 12, 2015 11:35

Olá,

gostaria de obter ajuda para o seguinte exercício.

Prove que {2}^{32} + 1 e {2}^{4} + 1 são primos entre si

Obrigado

Paulo
EREGON
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 10, 2014 16:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando

Re: Resto da divisão [Divisibilidade]

Mensagempor adauto martins » Qua Mai 13, 2015 13:38

MDC({2}^{32}+1,{2}^{4}+1)={2}^{2}+1=5 \neq 1
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Resto da divisão [Divisibilidade]

Mensagempor adauto martins » Qua Mai 13, 2015 15:58

uma correçao....
MDC({2}^{34}+1,17)=5.17=85\neq 1
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Resto da divisão [Divisibilidade]

Mensagempor adauto martins » Qua Mai 13, 2015 19:16

eita,mais uma correçao(erro federal esse meu...)
MDC({2}^{34}+1,17)=1,pois o num.{2}^{34}+1 nao e divisivel por 17...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Resto da divisão [Divisibilidade]

Mensagempor EREGON » Qui Mai 14, 2015 14:51

Olá,

obrigado. Existe alguma demonsttração a aplicar a este exercício(potencias) para provar o mesmo? Ou é só fazer as contas?

Porque o problema se põe em números com pontencias muito grandes, nestes casos, qual o melhor metodo para resolver?

Paulo
EREGON
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Seg Nov 10, 2014 16:00
Formação Escolar: ENSINO MÉDIO
Área/Curso: informatica
Andamento: cursando

Re: Resto da divisão [Divisibilidade]

Mensagempor adauto martins » Qui Mai 14, 2015 19:44

caro EREGON,
tem o teorema de euler...mas pra usa-lo tem q. aprimorar o conhecimento de congruencias...
se MDC(a,b)={a}^{{\varphi}_{n}}\equiv 1mod(n)...onde {\varphi}_{n}={{Z}_{n}}^{*}={a\in {Z}_{n}/MDC(a,n)=1}...{Z}_{n} eh o conjunto dos restos das divisoes dos inteiros por n...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.