por Italo de Souza » Dom Out 12, 2014 22:52
Descullpa pelo enunciado da pergunta, coloquei certo agora.
Simplifique a expressão
![(\sqrt[2]{x^2}(\sqrt[3]{x}(\sqrt[2]{x^4})) (\sqrt[2]{x^2}(\sqrt[3]{x}(\sqrt[2]{x^4}))](/latexrender/pictures/1bbe11b4db364c71529e2a597a2a29ef.png)
, sendo x maior ou igual a 0, obtemos:
espero q der pra entender que é uma raiz dentro da outra.
O que eu fiz foi transformar as raízes em potencias.
Ficando assim.
x^(2/2)*x^(1/3)*x^(4/2)
Eu cheguei em x^(10/3), Transformei em raiz de novo e ficou:
![\sqrt[3]{x^(10)} \sqrt[3]{x^(10)}](/latexrender/pictures/862ee17653294eee3ed4f775863793a7.png)
.
Passei o máximo de x pra fora e ficou
![{x}^{3}\sqrt[3]{x} {x}^{3}\sqrt[3]{x}](/latexrender/pictures/529daa6006354193bbceeefdacb5325d.png)
.
Infelizmente a resposta não é essa.
Seria
![x\sqrt[2]{x} x\sqrt[2]{x}](/latexrender/pictures/5c2f7feebca8e1954ca33463fad4deb6.png)
.
-
Italo de Souza
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Set 15, 2014 14:12
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: nenhum
- Andamento: cursando
por DanielFerreira » Dom Jan 04, 2015 14:33
Olá!
![\\ \sqrt[2]{x^2\sqrt[3]{x\sqrt[2]{x^4}}} = \\\\ \sqrt[2]{x^2\sqrt[3]{x\cdot\,x^{\frac{4}{2}}}} = \\\\ \sqrt[2]{x^2\sqrt[3]{x \cdot\,x^2}}} = \\\\ \sqrt[2]{x^2\sqrt[3]{x^3}}} = \\\\ \sqrt[2]{x^2 \cdot x^{\frac{3}{3}}}} = \\\\ \sqrt[2]{x^2 \cdot x^1} = \\\\ \sqrt[2]{x^2} \cdot \sqrt[2]{x} = \\\\ x^{\frac{2}{2}} \cdot x^{\frac{1}{2}} = \\\\ \boxed{x \cdot \sqrt[2]{x}} \\ \sqrt[2]{x^2\sqrt[3]{x\sqrt[2]{x^4}}} = \\\\ \sqrt[2]{x^2\sqrt[3]{x\cdot\,x^{\frac{4}{2}}}} = \\\\ \sqrt[2]{x^2\sqrt[3]{x \cdot\,x^2}}} = \\\\ \sqrt[2]{x^2\sqrt[3]{x^3}}} = \\\\ \sqrt[2]{x^2 \cdot x^{\frac{3}{3}}}} = \\\\ \sqrt[2]{x^2 \cdot x^1} = \\\\ \sqrt[2]{x^2} \cdot \sqrt[2]{x} = \\\\ x^{\frac{2}{2}} \cdot x^{\frac{1}{2}} = \\\\ \boxed{x \cdot \sqrt[2]{x}}](/latexrender/pictures/9d27f2c3881381478123acc634942226.png)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Teoria dos Números
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Potenciação e radiciação (essa-87)
por Italo de Souza » Dom Out 12, 2014 01:04
- 3 Respostas
- 3476 Exibições
- Última mensagem por petras

Qua Fev 15, 2017 22:44
Teoria dos Números
-
- Potenciação e Radiciação
por Carlos22 » Qua Abr 13, 2011 22:06
- 1 Respostas
- 1819 Exibições
- Última mensagem por FilipeCaceres

Qua Abr 13, 2011 22:27
Logaritmos
-
- [Potenciação e radiciação]
por SCHOOLGIRL+T » Qua Nov 07, 2012 21:19
- 4 Respostas
- 2485 Exibições
- Última mensagem por SCHOOLGIRL+T

Sex Nov 09, 2012 23:44
Álgebra Elementar
-
- [Potenciação e Radiciação]
por JU201015 » Seg Nov 12, 2012 22:06
- 2 Respostas
- 1815 Exibições
- Última mensagem por JU201015

Ter Nov 13, 2012 09:08
Álgebra Elementar
-
- Potenciação e radiciação
por anneliesero » Sáb Abr 27, 2013 22:46
- 1 Respostas
- 1556 Exibições
- Última mensagem por e8group

Sáb Abr 27, 2013 23:48
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.