por Italo de Souza » Dom Out 12, 2014 22:52
Descullpa pelo enunciado da pergunta, coloquei certo agora.
Simplifique a expressão
![(\sqrt[2]{x^2}(\sqrt[3]{x}(\sqrt[2]{x^4})) (\sqrt[2]{x^2}(\sqrt[3]{x}(\sqrt[2]{x^4}))](/latexrender/pictures/1bbe11b4db364c71529e2a597a2a29ef.png)
, sendo x maior ou igual a 0, obtemos:
espero q der pra entender que é uma raiz dentro da outra.
O que eu fiz foi transformar as raízes em potencias.
Ficando assim.
x^(2/2)*x^(1/3)*x^(4/2)
Eu cheguei em x^(10/3), Transformei em raiz de novo e ficou:
![\sqrt[3]{x^(10)} \sqrt[3]{x^(10)}](/latexrender/pictures/862ee17653294eee3ed4f775863793a7.png)
.
Passei o máximo de x pra fora e ficou
![{x}^{3}\sqrt[3]{x} {x}^{3}\sqrt[3]{x}](/latexrender/pictures/529daa6006354193bbceeefdacb5325d.png)
.
Infelizmente a resposta não é essa.
Seria
![x\sqrt[2]{x} x\sqrt[2]{x}](/latexrender/pictures/5c2f7feebca8e1954ca33463fad4deb6.png)
.
-
Italo de Souza
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Set 15, 2014 14:12
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: nenhum
- Andamento: cursando
por DanielFerreira » Dom Jan 04, 2015 14:33
Olá!
![\\ \sqrt[2]{x^2\sqrt[3]{x\sqrt[2]{x^4}}} = \\\\ \sqrt[2]{x^2\sqrt[3]{x\cdot\,x^{\frac{4}{2}}}} = \\\\ \sqrt[2]{x^2\sqrt[3]{x \cdot\,x^2}}} = \\\\ \sqrt[2]{x^2\sqrt[3]{x^3}}} = \\\\ \sqrt[2]{x^2 \cdot x^{\frac{3}{3}}}} = \\\\ \sqrt[2]{x^2 \cdot x^1} = \\\\ \sqrt[2]{x^2} \cdot \sqrt[2]{x} = \\\\ x^{\frac{2}{2}} \cdot x^{\frac{1}{2}} = \\\\ \boxed{x \cdot \sqrt[2]{x}} \\ \sqrt[2]{x^2\sqrt[3]{x\sqrt[2]{x^4}}} = \\\\ \sqrt[2]{x^2\sqrt[3]{x\cdot\,x^{\frac{4}{2}}}} = \\\\ \sqrt[2]{x^2\sqrt[3]{x \cdot\,x^2}}} = \\\\ \sqrt[2]{x^2\sqrt[3]{x^3}}} = \\\\ \sqrt[2]{x^2 \cdot x^{\frac{3}{3}}}} = \\\\ \sqrt[2]{x^2 \cdot x^1} = \\\\ \sqrt[2]{x^2} \cdot \sqrt[2]{x} = \\\\ x^{\frac{2}{2}} \cdot x^{\frac{1}{2}} = \\\\ \boxed{x \cdot \sqrt[2]{x}}](/latexrender/pictures/9d27f2c3881381478123acc634942226.png)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Teoria dos Números
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Potenciação e radiciação (essa-87)
por Italo de Souza » Dom Out 12, 2014 01:04
- 3 Respostas
- 3654 Exibições
- Última mensagem por petras

Qua Fev 15, 2017 22:44
Teoria dos Números
-
- Potenciação e Radiciação
por Carlos22 » Qua Abr 13, 2011 22:06
- 1 Respostas
- 1917 Exibições
- Última mensagem por FilipeCaceres

Qua Abr 13, 2011 22:27
Logaritmos
-
- [Potenciação e radiciação]
por SCHOOLGIRL+T » Qua Nov 07, 2012 21:19
- 4 Respostas
- 2652 Exibições
- Última mensagem por SCHOOLGIRL+T

Sex Nov 09, 2012 23:44
Álgebra Elementar
-
- [Potenciação e Radiciação]
por JU201015 » Seg Nov 12, 2012 22:06
- 2 Respostas
- 1937 Exibições
- Última mensagem por JU201015

Ter Nov 13, 2012 09:08
Álgebra Elementar
-
- Potenciação e radiciação
por anneliesero » Sáb Abr 27, 2013 22:46
- 1 Respostas
- 1651 Exibições
- Última mensagem por e8group

Sáb Abr 27, 2013 23:48
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.