• Anúncio Global
    Respostas
    Exibições
    Última mensagem

conjuntos dos números

conjuntos dos números

Mensagempor leticiapires52 » Ter Out 07, 2014 13:14

Considerando-se que o tamanho de cada conjunto corresponda diretamente à quantidade de seus elementos, é correta a seguinte representação dos conjuntos dos números N (naturais), Z (inteiros), Q (racionais), I (irracionais) e R (reais).
Anexos
conjunto numerico.JPG
conjunto numerico.JPG (3.67 KiB) Exibido 907 vezes
leticiapires52
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qua Fev 12, 2014 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: conjuntos dos números

Mensagempor adauto martins » Ter Out 07, 2014 15:24

essa e uma forma grafica e didatica de apresentar os numeros...como sabemos todos os conjuntos numericos sao infinitos...em um intervalo de reta finito,(0,1) tem infinitos numeros racionais e irracionais...entao qto ao numero de elementos o desenho e incorreto,qto a propriedade de perntinencia,estar contido em...etc,uma forma didatica esta correto...logo qto ao numero de elementos esta incorreto,pois todos os conj.numericos sao infinitos,possuem infinitos elementos...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 705
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}