• Anúncio Global
    Respostas
    Exibições
    Última mensagem

desigualdade:prova

desigualdade:prova

Mensagempor Victor Gabriel » Ter Jun 18, 2013 13:48

Pessoal olha se estou certo:

questão: Mostre que se x,y\geq0 então \sqrt[]{xy}\leq\frac{x+y}{2}.

PROVA: fazendo:

{\left(\sqrt[]{x}-\sqrt[]{y} \right)}^{2}\geq0

x-2\sqrt[]{xy}+y\geq0\Rightarrow x+y\leq2\sqrt[]{xy}\Rightarrow\sqrt[]{xy}\leq\frac{x+y}{2}

estou certo ou não?
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Voltar para Teoria dos Números

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)