• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potências

Potências

Mensagempor Jhennyfer » Dom Abr 28, 2013 14:15

Oi, desde já peço desculpas... mas não achei nenhum tópico pra colocar a minha questão...
se alguém puder ajuda eu a me localizar melhor, agredeço!

enfim... tenho duas questões e não estou conseguindo resolver.

1)Efetuando as operações indicadas na expressão abaixo, obtemos um número de quatro algarismos . Qual é a soma dos algarismos desse número?
R:7

(\frac{2^2^0^0^7+2^2^0^0^5}{2^2^0^0^6+2^2^0^0^4}).2006

Minha primeira tentativa foi tentar dividir primeiro as potencias, e depois somá-las...
mas daí o resultado é 4, e multiplicando por 2006, a soma de algarismos não será 7 =/
- Vi em alguns exemplos que terei que desenvolver a potencia para somar! Mas a potencia é muito grande,
sei que há outra maneira mas não sei qual!
a partir do resultado conclui que o número que resulta das potencias é 2, pois 2x2006=4012 (somando os algarismos obtem-se 7)
Enfim, meu problema está na soma e divisão de potencias.

Questão 2.
(FUVEST-SP) Se...
4^1^6.5^2^5=\alpha.10^n
com
1\leq\alpha<10
então N é igual a: (no gabarito R:27)

Essa questão nem consegui começar a pensar em algo.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Potências

Mensagempor Cleyson007 » Seg Abr 29, 2013 11:05

Olá Jhennyfer, bom dia!

Se fosse eu, criaria o tópico em: viewforum.php?f=106

Vou te ajudar com a primeira dúvida. Ok? Acompanhe:

(2^2007 + 2^2005) / (2^2006 + 2^2004) . 2006 =

2^2004(2^3 + 2) / (2^2004(2^2 +1) . 2006 =

10/5 . 2006 =

2 (2006) = 4012

Soma dos algarismos: 4 + 0 + 1 + 2 = 7

Comente qualquer dúvida. Bons estudos :y:

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Potências

Mensagempor Jhennyfer » Seg Abr 29, 2013 11:19

Não entendi essa parte :(

2^2004(2^3 + 2) / (2^2004(2^2 +1) . 2006 =

não entendi essa substituição das bases iguais e esse calculo entre parenteses.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Potências

Mensagempor Cleyson007 » Seg Abr 29, 2013 11:45

Ah sim, vou explicar..

Vou usar o LaTeX para facilitar a visualização:

\frac{{2}^{2004}({2}^{3}+2)}{{2}^{2004}({2}^{2}+1)}\,.\,2006

Conhece uma regra da multiplicação onde diz: "Quando as bases são iguais conserva-se a base e soma-se os expoentes"?. Bom, o que eu fiz foi isso!

Primeiro: Coloquei o {2}^{2004} tanto no numerador quanto no denominador para depois "cortar" os dois.

Segundo: Vamos agora aplicar a regra!

{2}^{2007} = {2}^{2004}({2}^{3})} --> Conservei a base 2 e somei os expoentes (2004 + 3 = 2007).

{2}^{2005} = {2}^{2004}({2}^{1})} --> Conservei a base 2 e somei os expoentes (2004 + 1 = 2005).

{2}^{2006} = {2}^{2004}({2}^{2})} --> Conservei a base 2 e somei os expoentes (2004 + 2 = 2006).

{2}^{2004} = {2}^{2004}({2}^{0})} --> Conservei a base 2 e somei os expoentes (2004 + 0 = 2004). Aqui vale lembrar que {2}^{0}=1.

Veja se esclareci suas dúvidas. Qualquer coisa estou a disposição :y:

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Potências

Mensagempor Jhennyfer » Seg Abr 29, 2013 11:53

Entendi perfeitamente, é que eu ainda não domino muito bem essa parte de simplificar
as potencias, e acabo tendo dúvidas... mas obrigado, me ajudou muito!
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Potências

Mensagempor Cleyson007 » Seg Abr 29, 2013 12:03

Ok Jhennyfer!

Fico feliz em saber que pude ajudar :y:

Qualquer coisa estou a disposição..

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D