• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Raiz simples

Raiz simples

Mensagempor stockl » Dom Nov 04, 2012 12:09

Como resolver:

6,25?3=

A resposta é 10,8
stockl
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Nov 04, 2012 11:37
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Raiz simples

Mensagempor e8group » Dom Nov 04, 2012 14:40

Note que ,

6,25\cdot \sqrt{3} =  \frac{625}{100} \cdot \sqrt{3} = \frac{25}{4}\cdot \sqrt{3} .


Agora , seja : \sqrt{3} = k \implies k^2 = 3 .


Vamos tentar definir um melhor intervalo para k , de modo que k^2 fica bem próximo de 3 [/tex] .

i) É fácil ver que , k > 1 e k < 2 .Pois 1^2 = 1 < 3 e 2^2 = 4 > 3 . Sendo assim podemos dizer que ,

k\in (1,2) .

ii) Ainda podemos , reduzir este intervalo .


Veja que 1,6 \in (1,2) e 1,8 \in (1,2)

(1,6)^2  =  2,56  < 3 e (1,8)^2 = 3,24 > 3


Assim , k > 1,6  ,  k < 1,8 .


iii) Melhor aproximação :

1,6^2 = 2,56 < 3

1,7 ^2 = 2,89

1,72 = 2,9584


Daí ,

\frac{25}{4}\cdot \sqrt{3}  \approx  \frac{25}{4}\cdot 1,73  =  \frac{25}{4}\cdot \frac{173}{100} = \frac{173}{16} = \frac{172}{16} + \frac{1}{16}  =  \frac{86}{8}  +  (0,25)^2  = \frac{43}{4} + 0,0625 = \frac{40}{4} + \frac{3}{4} +  0,0625 = 10 + 0,0625  + 0,75  =   10,0625 + 0,75  = 10,8125 .





Há de notar que o resultado estar bem próximo de 10,8 .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}