• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potenciação

Potenciação

Mensagempor ViniRFB » Ter Out 30, 2012 18:03

\left( \frac {3}{2}^\frac {1}{2}\right) ^{2}


Pessoal como eu resolvo isso?

Please.

Desde já agradeço.
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Potenciação

Mensagempor Cleyson007 » Ter Out 30, 2012 20:49

{3}^{\frac{1}{2}}=\sqrt[]{3}

Logo, \left(\frac{\sqrt[]{3}}{2} \right)^2=\frac{3}{4}
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Potenciação

Mensagempor MarceloFantini » Ter Out 30, 2012 20:54

É só usar as propriedades que \left( \frac{a}{b} \right)^c = \frac{a^c}{b^c} e (d^e)^f = d^{e \cdot f}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Potenciação

Mensagempor ViniRFB » Qua Out 31, 2012 00:09

MarceloFantini escreveu:É só usar as propriedades que \left( \frac{a}{b} \right)^c = \frac{a^c}{b^c} e (d^e)^f = d^{e \cdot f}.



Essa propriedade seria o quê? Derivada?
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Potenciação

Mensagempor ViniRFB » Qua Out 31, 2012 00:14

Cleyson007 escreveu:{3}^{\frac{1}{2}}=\sqrt[]{3}

Logo, \left(\frac{\sqrt[]{3}}{2} \right)^2=\frac{3}{4}



Porque usou apenas a propriedade no numerador e deixou o denominados no caso 2 no mesmo lugar?


Amigo tem como dar o passo a passo para que eu entenda, na verdade n entendi. Me falta a base nesse conteúdo.


Grato
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Potenciação

Mensagempor MarceloFantini » Qua Out 31, 2012 06:55

Não, aquelas propriedades não são derivada, muito longe disso.

A primeira propriedade diz que se temos uma fração elevada a um expoente, isto é a mesma coisa que a fração que tem o numerador elevado a esse expoente e o denominador também elevado ao mesmo expoente.

A segunda propriedade diz que quando temos um número elevado a um expoente, e você eleva tudo à outro expoente, o efeito que isso produz é multiplicar, e não somar, os expoentes.

O que o Cleyson fez foi aplicar ambas, como eu sugeri: no numerador, você já tem um expoente no numerador (\sqrt{3}), que ao ser elevado por 2 temos (\sqrt{3})^2 = (3^{\frac{1}{2}})^2 = 3^{\frac{1}{2} \cdot 2}} = 3^{1} = 3, enquanto que no denominador é só elevar, 2^2 = 4.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Potenciação

Mensagempor ViniRFB » Sex Nov 02, 2012 14:06

MarceloFantini escreveu:Não, aquelas propriedades não são derivada, muito longe disso.

A primeira propriedade diz que se temos uma fração elevada a um expoente, isto é a mesma coisa que a fração que tem o numerador elevado a esse expoente e o denominador também elevado ao mesmo expoente.

A segunda propriedade diz que quando temos um número elevado a um expoente, e você eleva tudo à outro expoente, o efeito que isso produz é multiplicar, e não somar, os expoentes.

O que o Cleyson fez foi aplicar ambas, como eu sugeri: no numerador, você já tem um expoente no numerador (\sqrt{3}), que ao ser elevado por 2 temos (\sqrt{3})^2 = (3^{\frac{1}{2}})^2 = 3^{\frac{1}{2} \cdot 2}} = 3^{1} = 3, enquanto que no denominador é só elevar, 2^2 = 4.



Obrigado mais uma vez. Creio que eu tenha Entendido.
ViniRFB
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 76
Registrado em: Dom Fev 19, 2012 22:16
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Teoria dos Números

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D