• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Afirmativa

Afirmativa

Mensagempor Jhennyfer » Ter Jun 18, 2013 17:27

A afirmativa no gabarito está correta... mas alguém pode me explicar porque?!

- Toda dízima periódica provém da divisão de dois números inteiros, portanto é um número racional.

Boom, os números 0,1 e 0,9 não são números racionais??
se 0,1/0,9 resulta em uma dízima periódica 0,111...
então porque a afirmativa coloca somente números inteiros?
Obg desde já ;)
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Afirmativa

Mensagempor temujin » Ter Jun 18, 2013 18:11

Todo número racional é pode ser representado por uma razão entre dois inteiros. Neste caso que vc citou:

0,1 = \frac{1}{1} ; 0,9 = \frac{9}{10}

Logo, toda dízima é resultado da divisão de inteiros.
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: Afirmativa

Mensagempor Jhennyfer » Qua Jun 19, 2013 13:20

Bom... isso eu entendi!
Mas sinceramente, não fiquei conformada ainda... pois independente da origem, os números 0,1 e 0,9 propriamente ditos são racionais... e dividindo-os obteremos uma dízima!

Enfim... obrigado pela a explicação,
eu compreendi perfeitamente a linha de raciocínio.
Jhennyfer
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 67
Registrado em: Sáb Mar 30, 2013 15:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Teoria dos Números

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.