• Anúncio Global
    Respostas
    Exibições
    Última mensagem

COMBINAÇÃO LINEAR

COMBINAÇÃO LINEAR

Mensagempor rcpn » Qui Jun 22, 2017 12:59

ESCREVA UM VETOR W COMO COMBINAÇÃO LINEAR DE DOIS VETORES U E V PARA ENCONTRAR OS VALORES DOS ESCALARES A E B, TAIS QUE , W= A.U + B.U. ASSIM, SE FOR POSSÍVEL ESCREVER O VETOR W= (-5,-11) COMO UMA COMBINAÇÃO LINEAR ENTRE U= (3,5) E V= (-1,3), O VALOR DE A + B SERÁ:

A) 2
B) 0
C) 1
D) -1
E) -2

A RESPOSTA CERTA É A LETRA C), MAS COMO POSSO EXPRESSAR ESSE CÁLCULO, POIS ACHO QUE ESTOU FAZENDO ERRADO. EU USEI W=A.U +B.V

(-5,-11) = A(3,5) + B(-1,-3)
(-5,-11) = (3A,5A) + (-B,-3B)
(-5,-11) = (3A,5A - B,-3B)
(-5,-11) = (3A + 5A)
-5= 8A
A= 5/8

(-5,-11) = (-B + (-3B))
(-5,-11)= (-B - 3B)

-11 = -4B
4B = 11
B=11/4

SE EU SOMAR A + B = 23/20 O QUE NÃO CORRESPONDE A NENHUMA DAS ALTERNATIVAS. ONDE ESTOU ERRANDO ?
rcpn
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Ter Abr 08, 2014 10:46
Formação Escolar: ENSINO MÉDIO
Área/Curso: formação geral
Andamento: formado

Re: COMBINAÇÃO LINEAR

Mensagempor adauto martins » Ter Jun 27, 2017 13:17

w=au+bv\Rightarrow (-5,-11)=a(3,5)+b(-1,3)=(3a-b,5a+3)\Rightarrow
\\
3a-b=-5 (1)\\


5a+3b=-11(2)\\
resolvendo o sistema teremos:
a=-13/7 
\\
b=6/7 \\
a+b=-(13/7)+6/7=-1...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 700
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.